Semaine 1 – du 15 au 19 septembre

Logique

Assertions logiques, négation, "et", "ou", implication, équivalence.

Tables de vérités, propriétés (négation, distributivité).

Réciproque et contraposée. Une implication est équivalente à sa contraposée.

Quantificateurs. Négation d'une assertion avec des quantificateurs.

Ensembles

Appartenance, inclusion.

Complémentaire, intersection, union, propriétés.

Intersection quelconque et union quelconque (notation).

Produits cartésiens.

Raisonnements

Méthodes générales pour prouver un \forall , un \exists , une implication, une équivalence.

Raisonnement par l'absurde. Disjonction de cas.

Récurrence simple et récurrence forte.

Calculs et inégalités dans \mathbb{R}

Identités remarquables : développements et factorisations.

Propriétés opératoires des : fractions, puissances (entières), racines carrées, exponentielle et logarithme népérien.

Règles de manipulation des inégalités.

Valeur absolue. Intervalles. Partie entière.

Équations et inéquations sur \mathbb{R}

Résolution d'équations polynomiales et d'équations rationnelles. : degré 1 et

2, factorisations et mise au même dénominateur, tableau de signe.

Résolution d'une équation de degré 3 avec une racine évidente.

VI Python

Opérations sur les nombres.

Variables.

Module math et module random (il faut savoir importer un module entier ou une fonction spécifique).

Fonctions Python.

Instructions conditionnelles.

Les essentiels

- 1. Donner la négation d'une assertion logique et déterminer si elle est vraie ou fausse.
- 2. Soit $f: \mathbb{R} \to \mathbb{R}$. Écrire à l'aide des quantificateurs 2 des assertions suivantes (ou leur négation):
 - a) f atteint son maximum en x = b) f est (dé)croissante. 3.
 - c) f est (im)paire.

- d) f est constante.
- e) f est à valeurs (strictement) po- f) f ne prend que des valeurs rasitives.
 - tionnelles.
- 3. Simplifier un ensemble écrit sous forme d'une union/intersection, comme par exemple : $\bigcup_{i=0} [-i;i]$ ou encore $\mathbb{Z} \cap]-5;5] \cap \mathbb{R}^*$
- 4. Montrer que pour tout $n \in \mathbb{N}^*$, $1+2+\ldots+n=\frac{n(n+1)}{2}$
- 5. Résoudre sur \mathbb{R} une (in)équation polynômiale de degré 2.
- 6. Résoudre sur \mathbb{R} une (in)équation rationnelle simple, comme par exemple $\frac{2x+1}{x-3} < 1.$