Rappels de calcul Ι

Identités remarquables

À savoir utiliser parfaitement dans les deux sens, pour développer ou factoriser une expression.

Règle de calcul

Pour tous $a, b \in \mathbb{R}$:

(IR1)
$$(a+b)^2 = a^2 + 2ab + b^2$$
 (IR2) $(a-b)^2 = a^2 - 2ab + b^2$ (IR3) $(a+b)(a-b) = a^2 - b^2$

(IR2)
$$(a-b)^2 = a^2 - 2ab + b^2$$

(IR3)
$$(a+b)(a-b) = a^2 - b^2$$

Fractions

Règle de calcul

Pour tous $a, b, c, d, k \in \mathbb{R}$ avec $b, d, k \neq 0$, on a :

$$\bullet \quad \frac{a}{b} = \frac{a \times k}{b \times k}$$

$$\bullet \quad \frac{a}{b} \times \frac{c}{d} = \frac{a \times c}{b \times d} = \frac{ac}{bd}$$

• Si
$$c \neq 0$$
 : l'inverse de $\frac{c}{d}$ est $\frac{d}{c}$

$$\bullet \quad \frac{a}{d} + \frac{c}{d} = \frac{a+c}{d}$$

$$\bullet \quad \frac{a}{b} = \frac{a \div k}{b \div k}$$

•
$$a \times \frac{c}{d} = \frac{ac}{d} = \frac{a}{d} \times c$$

• Si
$$c \neq 0$$
: $\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c} = \frac{ad}{bc}$

$$\bullet \quad \frac{a}{d} - \frac{c}{d} = \frac{a - c}{d}$$

3. Valeur absolue

Définition

Pour tout $x \in \mathbb{R}$, on définit la valeur absolue de x, notée |x|, par : $|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0 \end{cases}$

Remarque. • Pour retirer une valeur absolue, il faut connaître le signe de ce qui est à l'intérieur. On peut procéder par disjonction de cas!

• Pour tous $x, y \in \mathbb{R}$, |x-y| correspond à la distance entre x et y sur la droite des réels.

Propriété

Pour tous $(x, y) \in \mathbb{R} \times \mathbb{R}^*$, on a :

•
$$|x| \geq 0$$

•
$$|x| = 0 \iff x = 0$$

$$\bullet$$
 $|x| = |-x|$

$$\bullet \quad |xy| = |x||y|$$

$$\bullet \quad \left| \frac{x}{y} \right| = \frac{|x|}{|y|}$$

•
$$|x^2| = |x|^2 = x^2$$

4. Puissances, racines

Règle de calcul

Pour tous $x, y \in \mathbb{R}^*$ et pour tous entiers $n, p \in \mathbb{Z}$, on a :

$$\bullet \quad \left(\frac{x}{y}\right)^n = \frac{x^n}{y^n}$$

$$\bullet \quad x^{-n} = \frac{1}{x^n}$$

$$x^n \times x^p = x^{n+p}$$

$$\bullet \quad \frac{x^n}{x^p} = x^{n-p}$$

Remarque.

- Pour tout $x \in \mathbb{R}$, $x^0 = 1$.
- Pour tout $n \in \mathbb{Z}$, $1^n = 1$ Pour tout $p \in \mathbb{N}^*$, $0^p = 0$
- On peut en fait définir a^b pour tous $a \in \mathbb{R}_+^*$ et $b \in \mathbb{R}$, par $a^b = \exp(b \ln(a)) = e^{b \ln a}$. Les règles de calcul ci-dessus sont encore vraies!

Rappel. Pour tout $a \in \mathbb{R}^+$, \sqrt{a} est par définition l'unique nombre **positif** dont le carré est égal à a.

Règle de calcul

Pour tous $a, b \in \mathbb{R}^+$:

$$(\sqrt{a})^2 = a$$

•
$$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}} \text{ (si } b > 0)$$

Et pour tout $a \in \mathbb{R}$, on $a : \sqrt{a^2} = |a|$

Définition

Pour tout $a \in \mathbb{R}$, on définit la **racine cubique de** a, notée $\sqrt[3]{a}$, comme étant l'unique nombre réel (positif ou négatif!) dont le cube est égal à a.

Règle de calcul

Pour tous $a, b \in \mathbb{R}$:

$$\bullet \quad \sqrt[3]{a} \times \sqrt[3]{b} = \sqrt[3]{ab}$$

•
$$\frac{\sqrt[3]{a}}{\sqrt[3]{b}} = \sqrt[3]{\frac{a}{b}} \text{ (si } b \neq 0)$$
 • $(\sqrt[3]{a})^3 = a = \sqrt[3]{a^3}$

$$\bullet \quad (\sqrt[3]{a})^3 = a = \sqrt[3]{a^3}$$

• Avec la définition étendue de la puissance a^b , on peut écrire $\sqrt{a} = a^{\frac{1}{2}}$ et $\sqrt[3]{a} = a^{\frac{1}{3}}$.

• On peut généraliser et définir la racine n-ième de a, pour tout $a \in \mathbb{R}^+$ et $n \in \mathbb{N}^*$, par : $\sqrt[n]{a} = a^{\frac{1}{n}}$. Il s'agit de l'unique réel positif x tel que $x^n = a$.

Exponentielle et logarithme népérien

Règle de calcul

Pour tous $x, y \in \mathbb{R}$, on a :

•
$$e^0 = 1$$
 et $e^1 = e \approx 2,72$ • $e^x > 0$

$$\bullet \quad e^x > 0$$

$$\bullet \quad e^{x+y} = e^x e^y$$

$$\bullet \quad e^{-x} = \frac{1}{e^x}$$

$$\bullet \quad e^{x-y} = \frac{e^x}{e^y}$$

$$\bullet \quad e^{xy} = (e^x)^y$$

On retrouve les mêmes règles de calcul qu'avec les puissances!

Règle de calcul

Pour tous x, y > 0 (attention, ln est définie sur \mathbb{R}_+^* uniquement!), et tout $n \in \mathbb{Z}$:

•
$$ln(1) = 0$$

•
$$\ln(e) = 1$$

•
$$\ln(xy) = \ln(x) + \ln(y)$$

•
$$\ln\left(\frac{1}{x}\right) = -\ln(x)$$

•
$$\ln\left(\frac{1}{x}\right) = -\ln(x)$$

• $\ln\left(\frac{x}{y}\right) = \ln(x) - \ln(y)$
• $\ln\left(x^n\right) = n\ln(x)$

•
$$\ln(x^n) = n \ln(x)$$

Règle de calcul

- Pour tout $x \in \mathbb{R}_+^* : e^{\ln(x)} = x$
- Pour tout $x \in \mathbb{R} : \ln(e^x) = x$

Fonctions polynômiales de degré 2

Remarque. On a étudié les fonctions polynomiales de degré 0 et 1 en troisième, et de degré 2 en première. On sait donc déjà résoudre des équations et inéquations faisant intervenir ces objets.

Proposition (Rappel: Fonctions polynomiales de degré 2)

Soit $f(x) = ax^2 + bx + c$ une fonction polynomiale de degré 2, avec $a, b, c \in \mathbb{R}, a \neq 0$.

On définit le **discriminant** de P par $\Delta = b^2 - 4ac$.

L'étude de f et de ses racines se fait en fonction du signe du discriminant.

$\begin{array}{c} \text{Signe} \\ \text{de } \Delta \end{array}$	Racines	Tableau de signe	Factorisation
$\Delta < 0$	Pas de racine réelle		Pas de factorisation dans $\mathbb R$
$\Delta = 0$	Une seule racine "double" $x_0 = \frac{-b}{2a}$		$f(x) = a(x - x_0)^2$
$\Delta > 0$	Deux racines distinctes $x_i = \frac{-b \pm \sqrt{\Delta}}{2a}$		$f(x) = a(x - x_1)(x - x_2)$