
Chapitre 11 – Matrices

Dans tous ce chapitre et de nombreux autres, on note K = R ou C.Soient n, p, q ∈ N∗.

I Définitions

Définition
On appelle matrice de taille n × p à coefficients dans K tout tableau à n lignes et p colonnes
constitué d’éléments de K :

A



a1,1 a1,2 · · · a1,j · · · a1,p

a2,1 a2,2 · · · a2,j · · · a2,p
...

...
...

...
ai,1 ai,2 · · · ai,j · · · ai,p

...
...

...
...

an,1 an,2 · · · an,j · · · an,p


• ai,j est l’élément situé à la i-ième ligne et la j-ième colonne de la matrice. Il est parfois note

(A)i,j .
• Les éléments ai,j sont appelés les coefficients de la matrice.
• On pourra voir noté A = (ai,j)1≤i≤n

1≤j≤p

ou plus simplement A = (ai,j).

• On note Mn,p(K) l’ensemble des matrices de taille n× p à coefficients dans K.

Exemple
• On a A =

(
1 −1 0
2 1

3 5

)
∈M2,3(R) et B =

(
i + 1 2

0 −i

)
∈M2,2(C)

Ici : a1,1 = 1, a1,2 = −1, a1,3 = 0, a2,1 = 2, a2,2 = 1
3 , a2,3 = 5.

• Écrire la matrice de taille 3× 4 dont le terme général est ai,j = (−1)i + j.

Définition
On dit que deux matrices sont égales si elles ont la même taille et si, en notant n × p leur taille :
∀i ∈ J1, nK,∀j ∈ J1, pK, ai,j = bi,j .
On note alors A = B.

Définition (Formats particuliers)
Soit A ∈Mn,p(K).

• Lorsque n = 1, on dit que A est une matrice ligne.
• Lorsque p = 1, on dit que A est une matrice colonne.
• Lorsque n = p, on dit que A est une matrice carrée d’ordre n.

On note Mn(K) (=Mn,n(K)) l’ensemble des matrices carrées d’ordre n à coefficients dans K.

Définition (Matrices importantes)
• La matrice de Mn,p(K) dont tous les éléments sont nuls est appelée la matrice nulle.

On la note 0n,p, ou plus simplement 0.
• La matrice carrée d’ordre n, dont le terme général est donné par δi,j =

{
1 si i = j
0 sinon est appelée

la matrice identité (ou matrice unité) d’ordre n. On la note In.
Tous ses coefficients sont nuls, sauf ceux sur la diagonale qui valent 1.
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Exemple

On a 02,3 =
(

0 0 0
0 0 0

)
, I3 =

1 0 0
0 1 0
0 0 1

 et 04,1 =


0
0
0
0

. Écrire les matrices 01,6, I5 et 02,2.

II Opérations sur les matrices

1. Structure vectorielle

Définition (Addition et multiplication par un scalaire)
Soient A, B ∈Mn,p(K) deux matrices de même taille, et λ ∈ K. On note A = (ai,j) et B = (bi,j).

• On définit la matrice A+B comme étant la matrice de taille n×p dont les coefficients s’obtiennent
en additionnant le coefficient de A et le coefficient de B correspondant :

∀i ∈ J1, nK, ∀j ∈ J1, pK, (A + B)i,j = ai,j + bi,j

• On définit la matrice λA comme étant la matrice de taille n× p dont les coefficients s’obtiennent
en multipliant par λ le coefficient de A correspondant :

∀i ∈ J1, nK,∀j ∈ J1, pK, (λA)i,j = λai,j

Remarque. On définit alors la matrice opposée de A comme étant −A = (−1)A.
On peut alors définir la différence de deux matrices A et B de même taille par A−B = A + (−B).
Encore une fois, les opérations s’effectuent coefficient par coefficient.

Exemple

Calculer
(

2 −3 0
1
2 4 5

)
+
(

1 1 3
2

−1
2 −3 −1

)
, 3×

(
2 −3
1
3 0

)
et 2

1 −3
2

5 −2
0 3

− 3

 0 1
0 2
−3 0



Propriété
Soient A, B, C ∈Mn,p(K), et λ, µ ∈ K.

• A + B = B + A (commutativité)
• (A + B) + C = A + (B + C) (associativité, on omettra les parenthèses : A + B + C)
• A + 0n,p = A et A + (−A) = 0n,p (0 est ”neutre” et −A a les propriétés de l’opposé)
• (λ + µ)A = λA + µA et λ(A + B) = λA + λB (distributivités)
• λ(µA) = (λµ)A (associativité mixte)

Démonstration. On no fera pas la preuve, qui consiste simplement à montrer les égalités coefficient par
coefficient, à l’aide des propriétés de l’addition et de la multiplication dans K.

2. Produit matriciel

Définition
Soit A ∈ Mn,p(K) et B ∈ Mp,q(K). On définit alors la matrice produit, notée A × B = AB, comme
étant la matrice de taille n× q définie par :

∀i ∈ J1, nK,∀j ∈ J1, qK, (AB)i,j =
p∑

k=1
ai,kbk,j
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Remarque. Le nombre de colonnes de A doit être égal au nombre de lignes de B pour que le produit matriciel
ait un sens !
Le coefficient (AB)i,j correspond alors au produit de la i-ième ligne de A par la j-ième colonne de B, où on
somme tous les produits terme à terme.
Le produit de deux matrices carrées d’ordre n est toujours défini.

Exemple
1. Calculer AB et BA lorsque ces produits sont possibles, dans chacun des cas suivants :

(a) A =
(

2 0 −1
−3 5 1

)
et B =

(
1 3 −2 0

)

(b) A =

 3 2 1 4
−1 2 0 1
1 2 2 −1

 et B =


1 2
2 1
1 −1
3 2


(c) A =

(
1 3 −1
0 1 2

)
et B =

−1 −1
0 4
0 2


(d) On reprend A =

(
1 3 −1
0 1 2

)
, et on pose B =

x
y
z

.

2. Quelle condition faut-il avoir sur les tailles de A et B, pour que les calculs suivants aient un sens ?

3BA− I2,3a) (AA)Bb) AB −BAc)

Propriété
Soient A, A′ ∈Mn,p(K), B, B′ ∈Mp,q(K) et C ∈Mq,r(K). Soit λ ∈ K

• (AB)C = A(BC) (associativité du produit : on écrira ABC, sans les parenthèses)
• AIp = InA = A

• A(B + B′) = AB + AB′ et (A + A′)B = AB + A′B (distributivité du produit matriciel sur la
somme)

• λ(AB) = (λA)B = A(λB) (associativité mixte)

Démonstration. La preuve est tout à fait accessible mais calculatoire. Par exemple pour le troisième
point, on a, pour tous i ∈ J1, nK et tout j ∈ J1, qK :

(A(B + B′))i,j =
p∑

k=1
Ai,k

(
B + B′)

k,j =
p∑

k=1
ai,k(bk,j + b′

k,j) =
p∑

k=1
ai,kbk,j +

p∑
k=1

ai,kb′
k,j = (AB)i,j +

(AB′)i,j

Remarque. � Les propriétés habituelles du produit ne s’appliquent pas au produit matriciel !
• On peut avoir un produit nul sans qu’aucune des deux matrices ne soit nulle ! (AB = 0 ; (A =

0 ou B = 0)).

Par exemple : A =
(

3 2 −1
2 4 −4

)
et B =

−2
5
4

 ou encore A =
(

1 0
0 0

)
et B =

(
0 0
1 0

)

• On ne peut pas simplifier un produit par un facteur non nul ! (ie (AB = AC et A 6= 0) ; B = C)).

Par exemple : A =

−2 2 1
−1 −4 3
1 −2 0

, B =
(
−1 1 3 1 0 2
−1 2 1

)
, et C =

1 −3 9
2 −2 5
1 −2 7


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• Le produit matriciel n’est pas commutatif !! On général : AB 6= BA, même si les deux produits sont

bien définis. Par exemple : A =
(

1 0
0 0

)
et B =

(
0 0
1 0

)
• Lorsque AB = BA, on dit que A et B commutent. Par exemple, la matrice identité commute avec

toutes les matrices carrées de même taille. Il en va de même pour la matrice carrée nulle.

3. Puissances et binôme de Newton

Définition
Soit A ∈Mn(K) une matrice carrée, et k ∈ N∗.
Par associativité, le produit A×A× . . .×A avec k facteurs est bien défini, et on le note Ak.
Par convention, on note A0 = In.

Exemple

Calculer A3 où A =
(
−1 3
0 2

)
.

Remarque. ∀k, l ∈ N, Ai+j = AkAl. � Comme le produit matriciel n’est pas commutatif, les propriétés
connues sur les puissances dans K ne sont plus vraies dans le cas des matrices. Par exemple :

• En général, (AB)k 6= AkBk

• (A + B)2 = (A + B)(A + B) = A2 + AB + BA + B2 6= A2 + 2AB + B2 en général.
Par contre, si les matrices commutent, les résultats connus sont tous vrais. En particulier le binôme :

Théorème
Soient A, B ∈Mn(K) deux matrices qui commutent, c’est-à-dire telles que AB = BA. Alors :

(A + B)m =
m∑

k=0

(
m

k

)
AkBm−k =

m∑
k=0

Am−kBk

Remarque. La matrice In commutent avec toutes les matrices de Mn(K) !

Exercice 1. Soit A =

2 1 0
0 2 1
0 0 2

. On note B =

0 1 0
0 0 1
0 0 0

, de sorte que A = 2I3 + B. Calculer B2

et B3, et en déduire l’expression explicite de An en fonction de n.

4. Transposition

Définition
Soit A = (aij,) ∈Mn,p(K). On définit la matrice transposée de A, notée A>, comme étant la matrice
de taille p× n (� ) donnée par :

∀i ∈ J1, pK, ∀j ∈ J1, nK,
(
A>
)

i,j
= aj,i

Chapitre 11 1BioB – Maths Page 4



Exemple

1. Soit A =
(

3 2 −1 4
2 4 −4 5

)
. Alors A> =


3 2
2 4
−1 −4
4 5

.

2. On a 0>
n,p = 0p,n et I>

n = In

3. La transposition transforme les lignes en colonnes et réciproquement.

Propriété
Soient A, B ∈Mn,p(K) et C ∈Mp,q(K). Soit λ ∈ K.

•
(
A>
)>

= A (On dit que la transposition est involutive)

• (A + B)> = A> + B>

• (λA)> = λA>

• (BC)> = C>B>

Démonstration. Remarquons déjà que les tailles correspondent dans chaque égalité.

• Soient i ∈ J1, nK et j ∈ J1, pK. On a :
(
(A>)>

)
i,j

= (A>)j,i = Ai,j .

• Soient i ∈ J1, qK et j ∈ J1, nK. On a :(
C>B>

)
i,j

=
p∑

k=1
(C>)i,k(B>)k,j =

p∑
k=1

Ck,iBj,k =
p∑

k=1
Bj,kCk,i = (BC)j,i =

(
(BC)>

)
i,j
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III Matrices inversibles

1. Définition

Définition
Soit A ∈Mn(K) une matrice carrée d’ordre n.
On dit que A est inversible s’il existe une matrice B ∈Mn(K) telle que AB = BA = In.
On dit alors que B est l’inverse de A, et on note B = A−1.
On note GLn(K) l’ensemble des matrices inversibles de Mn(K).

Exemple

1. Soit A =
(

4 3
3 −2

)
. Vérifier que A est inversible d’inverse B =

(
2 3
3 4

)
.

2. In × In = In, donc la matrice identité est inversible, d’inverse I−1
n = In.

3. Pour tout B ∈Mn(K), on a 0nB = 0n 6= In, donc 0n n’est pas inversible.

4. La matrice A =
(

1 5
0 0

)
n’est pas inversible. En effet, pour toute matrice B =

(
a b
c d

)
∈M2(K),

on a AB =
(

a + 5c b + 5d
0 0

)
6= I2 puisque 0 6= 1.

Propriété (Simplification)
Soient A, B, C ∈Mn(K). Si A est inversible, alors on a :

AB = AC ⇐⇒ B = C

Démonstration. Le sens réciproque est toujours vrai. Pour le sens direct, lorsque A est inversible, on a
AB = AC =⇒ A−1AB = A−1AC, c’est-à-dire AB = AC =⇒ B = C

Proposition
Soient A, B ∈ Mn(K) telles que AB = In. Alors on a nécessairement BA = In, et donc A et B sont
inverses l’une de l’autre.
Pour des matrices carrées, l’une des deux égalités AB = In et BA = In suffit.

2. Propriétés opératoires

Propriété
Soient A, B ∈ GLn(K), et λ ∈ K. Alors :

• A−1 ∈ GLn(K), et
(
A−1)−1 = A (l’opération d’inversion est involutive).

• A> ∈ GLn(K), et
(
A>
)−1

=
(
A−1)>.

• AB ∈ GLn(K), et (AB)−1 = B−1A−1.

• ∀k ∈ N, Ak ∈ GLn(K), et
(
Ak
)−1

=
(
A−1)k. On note A−k.

• λA ∈ GLn(K) ⇐⇒ λ 6= 0, et si c’est le cas, alors (λA)−1 = 1
λ

A−1

Démonstration. • A−1A = AA−1 = In par définition de l’inverse, donc A−1 est bien inversible
d’inverse A.

•
(
A−1)> A> =

(
AA−1)> = I>

n = In (et de même A> (A−1)> =
(
A−1A

)> = I>
n = In), donc A> est

bien inversible d’inverse
(
A−1)>.
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• B−1A−1AB = B−1InB = B−1B = In (et de même ABB−1A−1 = In), donc AB est bien inversible
d’inverse B−1A−1.

• On montre ce résultat par récurrence sur k ∈ N. C’est vrai pour k = 0, car A0 = In et I−1
n = In.

Supposons le résultat vrai au rang k ∈ N. Alors Ak+1 = AAk est un produit de deux matrices
inversibles (selon l’HR), donc par le point précédent elle est encore inversible, et son inverse est
(Ak)−1A−1 = (A−1)kA−1 = (A−1)k+1 selon l’HR. D’où l’hérédité et donc la récurrence.

• Si λ = 0, alors λA = 0 non inversible.
Si λ 6= 0, alors 1

λ
A−1λA = λ

λ
A−1A = 1In = In (et de même λA

1
λ

A−1 = In). D’où le résultat.

Remarque. � La somme de deux matrices inversibles n’est en général pas inversible !
Par exemple, In + (−In) = 0n n’est pas inversible.

Corollaire
Soit A, P ∈Mn(K). On suppose que P est inversible. Alors on a :
A est inversible ⇐⇒ PA est inversible ⇐⇒ AP est inversible.

Démonstration. Si A est inversible, alors AP et PA le sont en tant que produit de deux matrices
inversibles.
Réciproquement, si AP est inversible, alors A = (AP )P −1 est inversible pour la même raison.
De même, si PA est inversible, alors A = P −1(PA) est encore inversible. D’où les équivalences.

3. Cas des matrices 2× 2
Soit A ∈M2(K).

Définition

On note A =
(

a b
c d

)
avec a, b, c, d ∈ K. On définit le déterminant de A comme étant le nombre :

det(A) =
∣∣∣∣∣a b
c d

∣∣∣∣∣ = ad− bc

Proposition
A est inversible si et seulement si det(A) 6= 0.

Et si c’est le cas, alors on a : A−1 = 1
det(A)

(
d −b
−c a

)

Démonstration. Si det(A) 6= 0, en posant B = 1
det(A)

(
d −b
−c a

)
, on a bien AB = BA = I2.

Supposons maintenant que A est inversible d’inverse A−1 =
(

a′ b′

c′ d′

)
∈M2(K).

On a AA−1 =
(

aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

)
= I2.

Ainsi, ca′ + dc′ = 0 (a′, c′) est proportionnel à (d,−c) : il existe λ ∈ K tel que a′ = λd et c′ = −λc
De même, ab′ + bd′ = 0 donc (b′, d′) est proportionnel à (−b, a) : il existe µ ∈ K tel que b′ = −µb et
d′ = µa.
Mais alors aa′ + bc′ = aλd− bλc = λ(ad− bc) = 1, et cb′ + dd′ = −cµb + dµa = µ(ad− bc) = 1
D’où ad− bc 6= 0, et λ = µ = 1

ad−bc . D’où le résultat.
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IV Pivot de Gauss sur les matrices

1. Matrices d’opérations élémentaires

Les opérations élémentaires sur les lignes d’une matrice sont les mêmes que celles sur les lignes d’un
système. À chacune de ces opérations correspond une matrice inversible telle qu’effectuer une opération
élémentaire sur la matrice revient à la multiplier par la matrice correspondante.

Définition
1. Soit i, j ∈ J1, nK, i 6= j. La matrice correspondant à l’opération de permutation Li ↔ Lj est la

matrice Pi,j dont les coefficients sont tous 0, sauf ceux d’indice i, j, d’indice j, i, et d’indice k, k
avec k ∈ J1, nK\{i, j}, qui valent 1.

2. Soit i ∈ J1, nK et λ ∈ K∗. La matrice correspondant à l’opération de dilatation Li ← λLi est la
matrice Di;λ obtenue à partir de l’identité en remplaçant le coefficient d’indice (i, i) par λ.

3. Soient i, j ∈ J1, nK, i 6= j, et λ ∈ K. La matrice correspondant à l’opération de transvection
Li ← Li + λLj est la matrice Ti,j;λ obtenue à partir de l’identité en remplaçant le coefficient
d’indice i, j par λ.

À dessiner

Proposition
• Les matrices d’opérations élémentaires sont toutes obtenues en réalisant l’opération en question

à partir de la matrice identité In.
• Elles sont toutes inversibles, et on a : P −1

i,j = Pj,i, D−1
i;λ = Di, 1

λ
, T −1

i,j;λ = Ti,j;−λ.

• Réaliser une opération élémentaire sur les lignes d’une matrice revient à la multiplier à gauche
par la matrice de l’opération élémentaire correspondante.

• Réaliser une opération élémentaire sur les colonnes d’une matrice revient à la multiplier à droite
par la matrice correspondante.

Corollaire
Réaliser des opérations élémentaires sur les lignes ne change pas le caractère inversible ou non d’une
matrice.

On peut appliquer le Pivot de Gauss à n’importe quelle matrice (carrée ou non), et obtenir une matrice
échelonnée, au sens suivant.

Définition
Une matrice est dite échelonnée si le nombre de zéros qui commencent chaque ligne de la matrice est
strictement croissant, avec éventuellement plusieurs lignes nulles à la fin.

2. Rang et calcul de l’inverse

Définition
• On appelle rang d’une matrice échelonnée le nombre de lignes non nulles de cette matrice.
• On appelle rang d’une matrice le rang de n’importe quelle matrice échelonnée obtenue en lui

appliquant une succession d’opérations élémentaires.

Soit A ∈Mn(K) une matrice échelonnée.
Si A est de rang r < n, alors elle comporte au moins une ligne de zéros, et elle n’est donc pas inversible.
Si A est de rang n, on peut poursuivre le pivot de Gausse de la manière suivante :
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1. Appliquer des dilatations sur chaque ligne pour obtenir des coefficients diagonaux égaux à 1.
2. Prendre la colonne la plus à droite, et utiliser le pivot (1) pour annuler successivement tous les autres

coefficients au-dessus de la diagonale.
3. Recommencer cette opération sur les autres colonnes, de droite à gauche.

On appelle ”pivot de Gauss étendu” ce procédé, qui permet de transformer notre matrice en la matrice
identité In.

Proposition
Une matrice A ∈Mn(K) est inversible si et seulement si elle est de rang n.
Toute matrice inversible peut être transformée en In par opérations élémentaires sur les lignes.
En appliquant ces mêmes opérations, la matrice identité In est transformée en A−1.

Démonstration. Soient O1, O2, . . . , Os ∈ Mn(K), s ∈ N les matrices des opérations élémentaires effec-
tuées dans l’ordre sur la matrice A.
On a alors OsOs−1 . . . O2O1A = In, donc A−1 = OsOs−1 . . . O2O1 = OsOs−1 . . . O2O1In.
Ainsi, on obtient bien A−1 en multipliant In par les mêmes matrices dans le même ordre, c’est-à-dire
en effectuant les mêmes opérations élémentaires à partir de la matrice identité In.

Exemple

Inverser la matrice A =

 1 2 −1
2 1 −1
−2 −5 3

.

Remarque. En fait, toute matrice A de rang r ∈ J1, nK peut être transformée par des opérations élémentaires
sur ses lignes en colonnes en Jr , où Jr a r coefficients égaux à 1 sur la diagonale, et des 0 partout ailleurs.

3. Lien avec les systèmes linéaires

Soit (S)


a1,1x1 + a1,2x2 + . . . + a1,pxp = b1
a2,1x1 + a2,2x2 + . . . + a2,pxp = b2

...
an,1x1 + an,2x2 + . . . + an,pxp = bn

un système linéaire de n équations à p in-

connues.

Définition (Représentation matricielle)
La matrice A = (ai,j) ∈ Mn,p(K) formée des coefficients du système linéaire est appelée la matrice
du système.

La matrice colonne B =

b1
...

bn

 ∈Mn,1(K) est appelée la matrice du second membre du système.

On note X ∈Mp,1(K) la matrice colonne formée des inconnues du système.
Alors le système (S) est équivalent à l’équation matricielle : AX = B d’inconnue X ∈Mp,1(K).

Proposition
Le rang d’un système linéaire est égal au rang de sa matrice.
Un système linéaire carré est de Cramer si et seulement si sa matrice est inversible.
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Proposition
Soit A ∈Mn(K) une matrice carrée. Les trois propositions suivantes sont équivalentes :

(i) A est inversible.
(ii) Il existe B ∈Mn,1(K) tel que le système AX = B d’inconnue X admette une unique solution.
(iii) Tous les systèmes de la forme AX = B, avec B ∈ Mn,1(K) et d’inconnue X, admettent une

unique solution.
Si c’est le cas, alors l’unique solution est donnée par : X = A−1B

En effet, on a alors AX = B ⇐⇒ A−1AX = A−1B ⇐⇒ X = A−1B.

Ainsi, on peut résoudre un système pour déterminer l’inverse d’une matrice.
À l’inverse, on peut aussi réaliser une inversion de matrice afin de résoudre un système. Ceci n’est intéressant
que si on a une manière plus simple que le pivot de Gauss pour obtenir l’inverse. C’est le cas dans certains
cas particuliers !

Exemple

Soit (S)


x + 2y − 2z = 2

2x + y − 2z = 0
2x + 2y − 3z = 1

1. Donner la représentation matricielle du système linéaire (S) sous la forme AX = B.
2. Montrer que (A− I3)(A + I3) = 03.
3. En déduire que A est inversible et donner son inverse.
4. En déduire l’ensemble des solutions de (S).
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V Matrices carrées particulières
Soit A ∈Mn(K). On note A = (ai,j)1≤i,j≤n.

1. Diagonales

Définition
On dit que A est une matrice diagonale si tous ses coefficients non diagonaux sont nuls : ∀i, j ∈

Ji, nK, i 6= j =⇒ ai,j = 0. Ce sont les matrices de la forme :


d1 0 . . . 0

0 d2
. . . ...

... . . . . . . 0
0 . . . 0 dn

, avec d1, d2, . . . , dn ∈ K.

On note Diag(d1, . . . , dn) la matrice ci-dessus.
On note Dn(K) l’ensemble des matrices diagonales d’ordre n à coefficients dans K.

Exemple
• 0n = Diag(0, . . . , 0) et In = Diag(1, . . . , 1) sont des matrices diagonales.
• Écrire Diag(−2, 3, 0, 1) et Diag(2,−2).

Propriété
Soient D, E ∈ Dn(K) deux matrices diagonales. On note D = Diag(d1, . . . , dn) et E = Diag(e1, . . . , en).
Soient λ ∈ K et k ∈ N.

• D + λE est diagonale, avec D + λE = Diag(d1 + λe1, . . . , dn + λen).
• DE est diagonale, avec DE = Diag(d1e1, . . . , dnen).
• Dk est diagonale, avec Dk = Diag(dk

1, . . . , dk
n).

• D est inversible si et seulement si tous ses coefficients diagonaux sont non nuls : ∀i ∈ J1, nK, di 6= 0.
Si c’est le cas, alors D−1 = Diag

(
1
d1

, . . . , 1
dn

)
.

Proposition
Soit D = Diag(d1, . . . , dn) ∈ Dn(K).

• Multiplier une matrice A par D à gauche revient à dilater chaque ligne par le coefficient diagonal
correspondant.

• Multiplier une matrice A par D à droite revient à dilater chaque colonne par le coefficient diagonal
correspondant.

Autrement dit : (DA)i,j = diai,j et (AD)i,j = djai,j

Définition
On dit que A est une matrice scalaire d’ordre n si A est de la forme A = λIn avec λ ∈ K.
On a λIn = Diag(λ, . . . , λ) ∈ Dn(K).

Remarque. Multiplier par une matrice scalaire λIn revient à multiplier tous les coefficients par le facteur λ.

Proposition
Les seules matrices de Mn(K) qui commutent avec toutes les matrices de Mn(K) sont les matrices
scalaires.
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Démonstration. L’identité commute avec toutes les matrices, donc les matrices scalaires également.
Soit A ∈Mn(K). On suppose que A commute avec toutes les matrices de Mn(K).
Alors elle commute avec les matrices diagonales, donc multiplier sa ligne i par 2 revient à multiplier sa
colonne i par 2. Ainsi, tous ses coefficients hors de la diagonale sont nécessairement nuls, puisqu’on doit
avoir ai,j = 2ai,j .
On écrit donc A = Diag(d1, . . . , dn). A commute avec les matrices de permutation, donc les opérations
Li ↔ Lj et Ci ↔ Cj doivent donner le même résultat.
Ainsi, on a nécessairement di = dj , et ce pour tous les i, j ∈ J1, nK. A est donc bien une matrice
scalaire.

2. Triangulaires

Définition
On dit que A est une matrice triangulaire supérieure d’ordre n lorsque tous ses coefficients
strictement sous la diagonale sont nuls : ∀1 ≤ j < i ≤ n, ai,j = 0.
De même, on dit que A est une matrice triangulaire inférieure d’ordre n lorsque ∀1 ≤ i < j ≤
n, ai,j = 0.

Ce sont les matrices de la forme :


a1,1 a1,2 . . . a1,n

0 a2,2
. . . a2,n

... . . . . . . ...
0 . . . 0 an,n

, respectivement


a1,1 0 . . . 0

a2,1 a2,2
. . . ...

... . . . . . . 0
an,1 an,2 . . . an,n


Exemple

1. Toutes les matrices diagonales sont à la fois triangulaires supérieures et inférieures. Ce sont
d’ailleurs les seules.

2. La transposée d’une matrice triangulaire supérieure est une matrice triangulaire inférieure, et vice
versa.

3. Donner une matrice triangulaire non diagonale de taille 2× 2.

Propriété
Soient T, U ∈ Dn(K) deux matrices triangulaires supérieures. Soient λ ∈ K et k ∈ N.

• T + λU est encore triangulaire supérieure.
• TU est encore triangulaire supérieure, et ses coefficients diagonaux sont (TU)i,i = Ti,iUi,i.

• T k est diagonale, avec comme coefficients diagonaux
(
T k
)

i,i
= (Ti,i)k.

• T est inversible si et seulement si tous ses coefficients diagonaux sont non nuls : ∀i ∈ J1, nK, di 6= 0.
Si c’est le cas, alors T −1 est encore triangulaire supérieure.

Démonstration. Le premier point est immédiat, et tout le reste découle du deuxième point. On a, pour
tous i, j ∈ J1, nK :

(TU)i,j =
n∑

k=1
Ti,kUk,j . Or Ti,k = 0 dès que k < i et Uk,j = 0 dès que k > j.

Ainsi, pour i > j, tous les indices k vérifient k < i ou k > j, donc tous les termes sont nuls : (TU)i,j =∑n
k=1 0 = 0.

Et pour i = j, alors tous les termes sont nuls sauf éventuellement le terme d’indice k = i : (TU)i,i =
Ti,iUi,i.

Cette proposition est évidemment encore valable pour les matrices triangulaires inférieures, en passant
à la transposée.
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3. Symétriques, antisymétriques

Définition
• On dit que A est symétrique lorsque A> = A, ie : ∀i, j ∈ J1, nK, aj,i = ai,j

On note Sn(K) l’ensemble des matrices symétriques de Mn(K).
• On dit que A est antisymétrique lorsque A> = −A, ie : ∀i, j ∈ J1, nK, aj,i = −ai,j

On note An(K) l’ensemble des matrices symétriques de Mn(K).

Exemple
1. Donner une matrice symétrique en une matrice symétrique d’ordre 3.
2. Les matrices diagonales sont toujours symétriques.
3. Une matrice triangulaire est symétrique si et seulement si elle est diagonale.
4. Une matrice antisymétrique a tous ses coefficients diagonaux nuls.

Ainsi, une matrice diagonale est antisymétrique si et seulement si elle est nulle.

Proposition
• Toute combinaison linéaire de deux matrices symétriques est encore symétrique.
• Si une matrice symétrique est inversible, alors son inverse est encore une matrice symétrique.
• Il en va de même pour les matrices antisymétriques.

Remarque. � Le produit de deux matrices (anti)symétriques n’est en général plus une matrice (anti)symé-
trique !
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