
Chapitre 12 – Équations
différentielles usuelles

I Vocabulaire
On appelle équation différentielle toute équation dont l’inconnue est une fonction, sous la forme

d’une relation entre les dérivées successives de cette fonction.

Définition
• On appelle équation différentielle linéaire toute équation différentielle de la forme :

(E) : an(x)y(n)(x) + . . . + a2(x)y′′(x) + a1(x)y′(x) + a0(x)y(x) = b(x)

où les coefficients a0, . . . , an et le second membre b sont des fonctions continues sur un intervalle
I (an 6= 0), et l’inconnue est une fonction y : I → R n fois dérivable.

• L’entier n est appelé l’ordre de l’équation différentielle.
• On appelle solution de l’équation différentielle toute fonction f : I → R, n fois dérivable, telle

que ∀x ∈ I, an(x)f (n) + . . . + a1(x)f ′(x) + a0(x)f(x) = b(x).

NB : Par abus, on note souvent (E) : an(x)y(n) + . . . + a1(x)y′ + a0(x)y = b(x)

Exemple
• En dynamique des populations, le modèle de Malthus (1798) est un modèle simple qui décrit

la vitesse de croissance d’une population lorsque celle-ci est de taille raisonnable et placée dans
des conditions idéales : espace illimité, nourriture suffisante, absence de prédateurs, résistance
aux maladies… Dans ces conditions, Malthus considère que la production de nouveaux individus
est proportionnelle au nombre d’individus présents. En notant N(t) le nombre d’individus de la
population à l’instant t, le taux de croissance d’une telle population est alors proportionnel à la
population, ce qui donne la relation différentielle suivante : N ′(t) = rN(t)
où r > 0 désigne le taux de croissance, c’est-à-dire le « nombre » de nouveaux individus que peut
produire en moyenne chaque individu de la population par unité de temps.

• Le modèle de Verhulst (1838) a pour but de tenir compte de ces contraintes imposés par le
milieu, mais aussi la mise en place d’un palier. Pour cela, Verhulst choisit de remplacer le taux
de croissance constant r du modèle de Malthus par un taux de croissance variant avec la taille
de la population. Il introduit un constante K > 0, appelée capacité de charge, qui représente une
sorte de potentiel d’accueil du milieu vis-à-vis de la population. Ainsi le taux de reproduction de
la population diminue lorsque l’effectif s’approche de la valeur K. Il aboutit à l’équation :

N ′(t) = r

(
1 − N(t)

K

)
N(t)

• En mécanique, l’étude d’une masse accrochée à un ressort horizontal sans frottement donne l’équa-

tion différentielle suivante : x′′(t) + k

m
x(t) = 0 , où x(t) est la position de la masse en fonction

du temps t, k est la constante de raideur du ressort, et m la masse de la masse.
• La chute l’un corps avec frottement peut-être modélisée à l’aide de l’équation suivante :

v′ + λv2 = g , où v représente la vitesse du corps, g la constante d’accélération de la pesanteur
et λ le coefficient de frottement : le freinage dû aux frottements est proportionnel au carré de la
vitesse.
C’est une équation différentielle non linéaire !
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Définition
On appelle équation homogène associée à (E) (ou parfois ”équation sans second membre”) l’équa-
tion où on a remplacé le second membre par 0 :

(EH) : any(n)(x) + . . . + a1y′(x) + a0(x)y(x) = 0

L’équation homogène intervient dans la résolution d’une équation quelconque, par le principe de superposition
que l’on verra au cours du chapitre.

Définition
On dit que l’équation différentielle (E) est à coefficients constants si tous ses coefficients sont des
fonctions constantes :

(E) : any(n)(x) + . . . + a2y′′(x) + a1y′(x) + a0y(x) = b(x), a0, . . . , an ∈ R

Enfin, lorsqu’on modélise des phénomènes, il n’est pas rare qu’on ait, en plus de l’équation différentielle,
une valeur connue au temps t = 0 par exemple : c’est ce qu’on appelle une condition initiale

Définition
• On appelle condition de Cauchy toute condition portant sur une solution de l’équation diffé-

rentielle qui lui impose (ou à une de ses dérivées) une valeur donnée en un point donné de I.
Elle est donc de la forme : y(k)(x0) = y0 avec k ∈ J0, nK, x0 ∈ I et y0 ∈ R.

• On appelle problème de Cauchy tout système comportant une équation différentielle et une
ou plusieurs conditions de Cauchy.
Les solutions d’un problème de Cauchy sont les fonctions f : I → R qui vérifient simultanément
l’équation différentielle et toutes les conditions de Cauchy du problème.

Exemple N ′(t) = 1, 3
(

1 − N(t)
10000

)
N(t)

N(0) = 2000
est le problème de Cauchy associé à un modèle de Verhulst avec

une population initiale de 2000 individus.
x′′(t) + k

m
x(t) = 0

x(0) = 0, 05
x′(0) = 0

est le problème de Cauchy qui modélise la position d’une masse accrochée à

un ressort horizontal, lâchée avec une vitesse initiale nulle à 5 cm de sa position d’équilibre.

Nous allons apprendre à résoudre les équations différentielles linéaires :
1. d’ordre 1, à coefficients quelconques
2. d’ordre 2, à coefficients constants
Soit I un intervalle de R.
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II Équations du premier ordre
On étudie dans ce paragraphe les équations différentielles de la forme : (E)y′ + a(x)y = b(x), où a, b :

I → R sont deux fonctions continues sur I, et l’inconnue est une fonction dérivable y : I → R.

1. Le cas où a et b sont constantes

Soient a, b ∈ R. On considère (E) : y′ + ay = b d’inconnue y : R → R.

Théorème
• Si a = 0, alors les solutions sont les fonctions de la forme y(x) = bx + C où C ∈ R.
• Si b = 0 (équation homogène), alors les solutions sont les fonctions de la forme y(x) = λe−ax,

λ ∈ R.

• Si a 6= 0, alors les solutions sont les foncitons de la forme y(x) = λe−ax + b

a
où λ ∈ R.

Elles s’obtiennent donc comme somme des solutions de l’équation homogène et d’une solution
particulière de (E), la fonction constante b

a
.

Exemple
• Résoudre l’équation du modèle de Malthus. Qu’en pensez-vous ?

2. Résolution du cas homogène (b(x) = 0)

Soit a : I → R une fonction continue. On considère l’équation différentielle homogène (E) : y′+a(x)y = 0.

Théorème
Soit A : I → R une primitive quelconque de a sur I. Alors les solutions de (E) sont les fonctions de la
forme : y(x) = λe−A(x), où λ ∈ R.

Démonstration. Soit y : I → R dérivable une solution potentielle. Posons z(x) = y(x)eA(x) pour tout
x ∈ I.
Alors z est dérivable sur I, de dérivée : z′(x) = y′(x)eA(x) + y(x)a(x)eA(x) = (y′(x) + a(x)y(x))eA(x).
Ainsi : y est solution de (E) ⇐⇒ ∀x ∈ I, z′(x) = 0 (puisque eA(x) ne s’annule pas sur I)
⇐⇒ ∃λ ∈ R, z = λ ⇐⇒ ∃λ ∈ R, ∀x ∈ I, y(x) = λe−A(x)

Exemple
Résoudre sur R l’équation homogène y′ + x2y = 0, et l’équation y′ = − sin(x)y.

3. Structure de l’ensemble des solutions

Soient a, b : I → R deux fonctions continues : on s’intéresse au cas général : (E) y′ + a(x)y = b(x).

Théorème (Principe de superposition)
Notons SH l’ensemble des solutions de l’équation homogène (EH) associée à (E). Supposons qu’on
connaît une solution particulière yp : I → R de l’équation (E).
Alors l’ensemble des solutions de E est :

S = {yp + yh | yh ∈ SH } = yp + SH
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Démonstration. Soit y : I → R dérivable, une solution potentielle de E. Alors on a :
y est solution de E ⇐⇒ y′ + a(x)y = b(x) ⇐⇒ y′ + a(x)y = y′

p + a(x)yp

⇐⇒ (y − yp)′ + a(x) (y − yp) = 0 ⇐⇒ (y − yp) est solution de (EH)
⇐⇒ ∃yh ∈ SH , y − yp = yh ⇐⇒ ∃yh ∈ SH , y = yp + yh.

Méthode
Pour résoudre une équation différentielle linéaire d’ordre 1 :

1. On résout l’équation homogène associée.
2. On détermine une solution particulière de l’équation, qui existe toujours !
3. On somme les deux.

Théorème
Soient a, b : I → R continues, x0 ∈ I et y0 ∈ R.

Alors le problème de Cauchy
{

y′ + a(x)y = b(x)
y(x0) = y0

admet une unique solution sur I.

4. Obtention d’une solution particulière par variation de la constante

Pour obtenir une solution particulière, on commence d’abord par essayer de voir si une solution évidente
n’existerait pas, par exemple un polynôme de petit degré.

Exemple
1. Résoudre sur R l’équation différentielle : y′(x) + xy(x) = 2x

2. Résoudre sur R l’équation différentielle : y′ + ty(x) = t3 + 2t

Méthode (Variation de la constante)
La méthode de ”variation de la constante” consiste à chercher une solution particulière yp sous la forme
λ(x)e−A(x) où A est une primitive quelconque de a sur I et λ n’est plus une constante, mais une fonction
dérivable sur I.

1. On pose λ : I → R une fonction dérivable, et yp(x) = λ(x)e−A(x).
2. On dérive la fonction yp et on écrit que yp doit vérifier l’équation (E).
3. On obtient une condition sur λ′ : λ′(x) = b(x)eA(x).
4. On détermine une fonction λ convenable par un calcul de primitive.
5. On conclut en donnant yp.

Exemple

Résoudre sur R : y′ − xy = 2xe
x2
2

Méthode (Cas général)
Dans le cas d’une équation du type (E) : a1(x)y′(x) + a0(x)y(x) = b(x) :

1. On se place sur un intervalle I sur lequel a1 ne s’annule pas.

2. On écrit (E) ⇐⇒ y′(x) + a0(x)
a1(x)y(x) = b(x)

a1(x) , qu’on résout par la méthode précédente.
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III Équations du second ordre à coefficients constants
On étudie dans ce paragraphe les équations différentielles de la forme : (E) ay′′(x) + by′(x) + cy(x) = d(x),
où a, b, c ∈ R sont des constantes, a 6= 0, d : I → R est une fonction continue sur I, et l’inconnue est une
fonction y : I → R deux fois dérivable.

1. Résolution du cas homogène (d(x) = 0)

On résout ici l’équation homogène (EH) : ay′′(x) + by′(x) + cy(x) = 0, où a, b, c ∈ R, a 6= 0.

Théorème
On considère l’équation caractéristique (Ec) : ar2 + br + c = 0.
Notons ∆ = b2 − 4ac son discriminant.

• Si ∆ > 0, on note r1 et r2 les deux solutions réelles distinctes de (Ec).
Alors les solutions de (EH) sont les fonctions de la forme :

∀x ∈ R, y(x) = λer1x + µer2x, λ, µ ∈ R

• Si ∆ = 0, on note r0 l’unique solution réelle (double) de (Ec).
Alors les solutions de (EH) sont les fonctions de la forme :

∀x ∈ R, y(x) = (λ + µx) er0x, λ, µ ∈ R

• Si ∆ < 0, on note z1 = α + iβ et z2 = z1 = α − iβ les deux solutions complexes (non réelles)
conjuguées de (Ec), sous forme algébrique, avec α, β ∈ R.
Alors les solutions de (EH) sont les fonctions de la forme :

∀x ∈ R, y(x) = eαx (λ cos(βx) + µ sin(βx)) , λ, µ ∈ R

où encore les fonctions de la forme eαxC cos(βx + ϕ), C, ϕ ∈ R.

Exemple
Résoudre les équations suivantes sur R :

y′′ − y′ − 2y = 0a) y′′ + 2y′ + 5y = 0b) y′′ + 2y′ + y = 0c)

2. Structure de l’ensemble des solutions

Soient a, b, c ∈ R (a 6= 0), et d : I → R une fonction continue : on s’intéresse au cas général (E) ay′′(x)+
by′(x) + cy(x) = d(x).

Théorème (Principe de superposition)
Notons SH l’ensemble des solutions de l’équation homogène (EH) associée à (E). Supposons qu’on
connaît une solution particulière yp : I → R de l’équation (E).
Alors l’ensemble des solutions de E est :

S = {yp + yh | yh ∈ SH } = yp + SH

Démonstration. La preuve est exactement la même que pour les équations d’ordre 1 : on montre que y
est solution de (E) si et seulement si y − yp est solution de (EH).

Remarque. Le principe de superposition est en fait vrai pour n’importe quelle équation différentielle linéaire :
l’ensemble des solutions est obtenu comme somme des solutions de l’équation homogène associée et d’une
solution particulière de l’équation.
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Méthode
Pour résoudre une équation différentielle linéaire d’ordre 1 :

1. On résout l’équation homogène associée.
2. On détermine une solution particulière de l’équation.
3. On somme les deux.

Théorème
Soient a, b, c ∈ R, a 6= 0, et d : I → R une fonction continue. Soient x0 ∈ I et y0, y′

0 ∈ R.

Alors le problème de Cauchy


ay′′ + by′ + cy = d(x)
y(x0) = y0
y′(x0) = y′

0

admet une unique solution sur I.

3. Recherche de solutions particulières

Il n’y a pas de méthode générale pour déterminer facilement une solution particulière dans ce cas.
On vous donnera toujours une forme sous laquelle chercher une solution particulière.
On pourra cependant retenir la méthode suivante dans le cas où le second membre est le produit d’un
polynôme et d’une exponentielle : P (x)erx. Ce cas inclut aussi le cas d’un polynôme seul (r = 0) ou d’une
exponentielle seule (P = 1)

Méthode (HP)
Si le second membre de l’équation différentielle est de la forme P (x)erx avec P une fonction polynomiale
et r ∈ R :

• Si r n’est pas une racine de l’équation caractéristique, on cherche une solution particulière sous
la forme yp(x) = Q(x)erx où Q est une fonction polynomiale de même degré que P .

• Si r est une racine simple ∆ 6= 0 de l’équation caractéristique, on cherche une solution particulière
sous la forme yp(x) = xQ(x)erx.

• Si r est la racine double de l’équation caractéristique, on cherche une solution particulière sous la
forme yp(x) = x2Q(x)erx.

En particulier, quand le second membre est polynomial, on cherche une solution sous la forme d’un
polynôme du même degré.

Exemple
1. Résoudre sur R l’équation y′′ + 3y′ + 2y = 3

2. Déterminer l’unique solution sur R du problème de Cauchy :


y′′ − y′ − 2y = x
y(0) = 1
y′(0) = 2

3. Résoudre sur R l’équation y′′ − y′ − 2y = e2x

Indication : selon la méthode, on doit chercher une solution particulière sous la forme
yp(x) = (αx + β)e2x, α, β ∈ R.
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