Chapitre 2 – Trigonométrie

I Définition

On se place dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$, et on considère \mathcal{C} le cercle de centre O et de rayon 1 (cercle trigonométrique).

Définition

Soit $\theta \in \mathbb{R}$ et M l'unique point de \mathcal{C} tel que l'angle orienté $(\overrightarrow{i}, \overrightarrow{OM})$ ait pour mesure (en radians) θ . Alors on définit $(\cos(\theta), \sin(\theta))$ comme étant les coordonnées du point M dans le repère.

Si $\cos(\theta) \neq 0$, on définit $\tan(\theta)$ comme étant le quotient $\tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)}$

Proposition (Valeurs particulières) $\frac{-}{2}$ θ (rad) $\cos(\theta)$ $\sin(\theta)$ $tan(\theta)$ 0 1 0 $\overline{6}$ 2 $\overline{2}$ $\sqrt{3}$ 0 π $\sqrt{2}$ 1 4 $\sqrt{3}$ $\sqrt{3}$ $\overline{3}$ 0 1 ND 2π $\sqrt{3}$ -10 0 π

 $Remarque. \sin(\theta)$ et $\cos(\theta)$ sont définis pour tout $\theta \in \mathbb{R}$. Par contre, $\tan(\theta)$ est n'est pas défini en $\frac{\pi}{2}, -\frac{\pi}{2}$, et tous les angles associés. Son domaine de définition est $\mathbb{R} \setminus \left\{ \frac{\pi}{2} + k\pi \mid k \in \mathbb{Z} \right\} = \bigcup_{k \in \mathbb{Z}} \left] -\frac{\pi}{2} + k\pi ; \frac{\pi}{2} + k\pi \right[$. Dans toute la suite, les formules impliquant la tangente sont vraies dès qu'elles ont un sens!

 π

Proposition

On a pour tout $\theta \in \mathbb{R}$, $\cos^2(\theta) + \sin^2(\theta) = 1$.

Et dès que ça a un sens : $\tan^2(\theta) + 1 = \frac{1}{\cos^2(\theta)}$.

TT Symétries et périodicités

Les symétries du cercle permettent d'énoncer de multiples formules, à savoir retrouver à partir d'un dessin!

Règle de calcul
$$\cos(x+2\pi) = \cos(x) \qquad \sin(x+2\pi) = \sin(x) \qquad \tan(x+2\pi) = \tan(x)$$

$$\cos(-x) = \cos(x) \qquad \sin(-x) = -\sin(x) \qquad \tan(-x) = -\tan(x)$$

$$\cos(\pi+x) = -\cos(x) \qquad \sin(\pi+x) = -\sin(x) \qquad \tan(\pi+x) = \tan(x)$$

$$\cos(\pi-x) = -\cos(x) \qquad \sin(\pi-x) = \sin(x) \qquad \tan(\pi-x) = -\tan(x)$$

$$\cos\left(\frac{\pi}{2}+x\right) = -\sin(x) \qquad \sin\left(\frac{\pi}{2}+x\right) = \cos(x) \qquad \tan\left(\frac{\pi}{2}+x\right) = -\frac{1}{\tan(x)}$$

$$\cos\left(\frac{\pi}{2}-x\right) = \sin(x) \qquad \sin\left(\frac{\pi}{2}-x\right) = \cos(x) \qquad \tan\left(\frac{\pi}{2}-x\right) = \frac{1}{\tan(x)}$$

Remarque. On trouve notamment que les fonctions cos, sin et tan sont toutes 2π -périodiques (tan est même π -périodique), que cos est paire et que sin et tan sont impaires.

IIIFormules d'addition et conséquences

Pour tous $a, b \in \mathbb{R}$, dès que ça a un sens :

Proposition

$$\cos(a+b) = \cos(a)\cos(b) - \sin(a)\sin(b)$$
 et $\sin(a+b) = \sin(a)\cos(b) + \cos(a)\sin(b)$

Corollaire

$$\cos(a-b) = \cos(a)\cos(b) + \sin(a)\sin(b)$$

$$\tan(a+b) = \frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)}$$

$$\tan(a-b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}$$

$$\tan(a-b) = \frac{\tan(a) - \tan(b)}{1 + \tan(a)\tan(b)}$$

$$\cos(2a) = \cos^{2}(a) - \sin^{2}(a)$$

$$= 1 - 2\sin^{2}(a) \qquad \sin(2a) = 2\sin(a)\cos(a)$$

$$= 2\cos^{2}(a) - 1$$

Démonstration. Pour les formules avec a-b, on utilise simplement l'écriture a-b=a+(-b) et les propriétés de parité.

Pour les formules avec 2a, on écrit simplement 2a = a + a, et on utilise le fait que $\cos^2 + \sin^2 = 1$. Pour la tangente : $\tan(a) + \tan(b) = \frac{\sin(a)}{\cos(a)} + \frac{\sin(b)}{\cos(b)} = \frac{\sin(a)\cos(b) + \sin(b)\cos(a)}{\cos(a)\cos(b)} = \frac{\sin(a+b)}{\cos(a)\cos(b)}$ $1 - \tan(a)\tan(b) = 1 - \frac{\sin(a)\sin(b)}{\cos(a)\cos(b)} = \frac{\cos(a)\cos(b) - \sin(a)\sin(b)}{\cos(a)\cos(b)} = \frac{\cos(a+b)}{\cos(a)\cos(b)}$ Donc $\frac{\tan(a) + \tan(b)}{1 - \tan(a)\tan(b)} = \frac{\sin(a+b)}{\cos(a+b)} = \tan(a+b)$.

$$1 - \tan(a)\tan(b) = 1 - \frac{\cos(a)\cos(b)}{\cos(a)\cos(b)} = \frac{\cos(a)\cos(b)}{\cos(a)\cos(b)} = \frac{\sin(a) + \tan(b)}{\cos(a)\tan(b)} = \frac{\sin(a+b)}{\cos(a+b)} = \tan(a+b).$$

Corollaire

$$\cos^2(a) = \frac{\cos(2a) + 1}{2}$$
 et $\sin^2(a) = \frac{1 - \cos(2a)}{2}$

IV Équations trigonométriques simples

Proposition

Soit $a \in \mathbb{R}$.

- Si |a| > 1, alors l'équation $\cos(x) = a$ n'a aucune solution réelle.
- Si $a \in [-1; 1]$, l'équation $\cos(x) = a$ admet une unique solution x_0 dans l'intervalle $[0; \pi[$. L'ensemble des solutions de l'équation est alors $S = \{x_0 + 2k\pi \mid k \in \mathbb{Z}\} \cup \{-x_0 + 2k\pi \mid x \in \mathbb{Z}\}$.

Remarque. • Pour $a \in [-1; 1]$, x_0 s'appelle l'**arccosinus** de a, et est noté $\arccos(a)$ (ou parfois $a\cos(a)$ ou $\cos^{-1}(a)$). On a $\arccos(a) \in [0; \pi[$.

• Pour tous
$$x, \theta \in \mathbb{R}$$
, on a $\cos(x) = \cos(\theta) \iff \begin{cases} x \equiv \theta \ [2\pi] \\ \text{ou} \\ x \equiv -\theta \ [2\pi] \end{cases}$

Proposition

Soit $a \in \mathbb{R}$.

- Si |a| > 1, alors l'équation $\sin(x) = a$ n'a aucune solution réelle.
- Si $a \in [-1; 1]$, l'équation $\sin(x) = a$ admet une unique solution x_0 dans l'intervalle $\left[-\frac{\pi}{2} ; \frac{\pi}{2} \right[$. L'ensemble des solutions de l'équation est alors $\mathcal{S} = \{x_0 + 2k\pi \mid k \in \mathbb{Z}\} \cup \{\pi - x_0 + 2k\pi \mid x \in \mathbb{Z}\}$.

Remarque. • Pour $a \in [-1; 1]$, x_0 s'appelle l'**arcsinus** de a, et est noté $\arcsin(a)$ (ou parfois asin(a) ou $\sin^{-1}(a)$). On a $\arcsin(a) \in \left[-\frac{\pi}{2}; \frac{\pi}{2}\right[$.

• Pour tous
$$x, \theta \in \mathbb{R}$$
, on a $\sin(x) = \sin(\theta) \iff \begin{cases} x \equiv \theta \ [2\pi] \\ \mathbf{ou} \\ x \equiv \pi - \theta \ [2\pi] \end{cases}$

Proposition

Soient $c, s \in \mathbb{R}$. Alors le système d'équations $\begin{cases} \cos(\theta) &= c \\ \sin(\theta) &= s \end{cases}$ admet des solutions si et seulement si $c^2 + s^2 = 1.$

Si c'est le cas, il admet une unique solution x_0 dans l'intervalle $]-\pi;\pi]$, et l'ensemble des solutions est $\mathcal{S} = \{x_0 + 2k\pi \mid k \in \mathbb{Z}\}.$

Proposition

Soit $a \in \mathbb{R}$. Alors l'équation $\tan(x) = a$ admet une unique solution x_0 dans l'intervalle $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$. L'ensemble des solutions de l'équation est alors $S = \{x_0 + k\pi \mid k \in \mathbb{Z}\}$.

Remarque. • Pour $a \in \mathbb{R}$, x_0 s'appelle l'**arctangente** de a, et est noté $\arctan(a)$ (ou parfois atan(a) ou $\tan^{-1}(a)$). On a $\arctan(a) \in \left] -\frac{\pi}{2} ; \frac{\pi}{2} \right[$.

• Pour tous $x, \theta \in \mathbb{R}$ avec $\theta \not\equiv \frac{\pi}{2} [\pi]$, on a $\tan(x) = \tan(\theta) \iff x \equiv \theta [\pi]$.

Pour résoudre une équation faisant intervenir un cosinus ou un sinus, on se ramène à une de ces équations simples, éventuellement à l'aide d'un changement de variable.

Et pour une inéquation : il faut toujours s'aider du cercle trigonométrique!

Transformation de $a\cos(\theta) + b\sin(\theta)$ \mathbf{V}

Proposition

Soient $a, b \in \mathbb{R}$ tels que $(a, b) \neq (0, 0)$. Alors on a, pour tout $\theta \in \mathbb{R}$:

$$a\cos(\theta) + b\sin(\theta) = r\cos(\theta + \varphi)$$

où
$$r = \sqrt{a^2 + b^2}$$
 et φ vérifie $\cos(\varphi) = \frac{a}{\sqrt{a^2 + b^2}}$ et $\sin(\varphi) = \frac{-b}{\sqrt{a^2 + b^2}}$.

Démonstration. Pour r > 0 et $\varphi \in \mathbb{R}$, on sait que $r\cos(\theta + \varphi) = r(\cos(\theta)\cos(\varphi) - \sin(\theta)\sin(\varphi)) =$ $(r\cos(\varphi))\cos(\theta) + (-r\sin(\varphi))\sin(\theta).$

Analyse: On cherche donc r et φ qui vérifient: $\begin{cases} r\cos(\varphi) = a \\ -r\sin(\varphi) = b \end{cases}$.

En additionnant le carré de chacune des deux lignes, on voit que r doit vérifier $r^2 = a^2 + b^2$. On pose donc $r = \sqrt{a^2 + b^2}$.

Le système devient $\begin{cases} \cos(\varphi) &= \frac{a}{r} &= \frac{a}{\sqrt{a^2 + b^2}} \\ \sin(\varphi) &= \frac{-b}{r} &= \frac{-b}{\sqrt{a^2 + b^2}} \end{cases}$ Comme $\left(\frac{a}{\sqrt{a^2 + b^2}}\right)^2 + \left(\frac{-b}{\sqrt{a^2 + b^2}}\right)^2 = \frac{a^2 + b^2}{a^2 + b^2} = 1, \text{ le système admet bien des solutions.}$

Synthèse : Posons $r = \sqrt{a^2 + b^2}$ et $\varphi \in \mathbb{R}$ une solution du système ci-dessus. Alors on a bien pour tout $\theta \in \mathbb{R} : r\cos(\theta + \varphi) = r(\cos(\theta)\cos(\varphi) - \sin(\theta)\sin(\varphi)) = a\cos(\theta) + b\sin(\theta).$

Exemple

On veut résoudre l'équation $\sqrt{3}\cos(x) - \sin(x) = \sqrt{2}$ d'inconnue $x \in \mathbb{R}$.

Pour cela, on cherche $(r, \varphi) \in \mathbb{R}_+^* \times \mathbb{R}$ tels que pour tout $x \in \mathbb{R}$, $\sqrt{3}\cos(x) - \sin(x) = r\cos(\theta + \varphi)$.

On sait que $r^2 = \sqrt{3}^2 + (-1)^2 = 4$ donc on pose r = 2.

Puis on sait que $\cos(\varphi) = \frac{\sqrt{3}}{r} = \frac{\sqrt{3}}{2}$, $\sin(\varphi) = \frac{-1}{-r} = \frac{1}{2}$, donc on pose $\varphi = \frac{\pi}{6}$.

On peut donc écrire $\sqrt{3}\cos(x) - \sin(x) = 2\cos\left(x + \frac{\pi}{6}\right)$ pour tout $x \in \mathbb{R}$.

L'équation devient alors $2\cos\left(x+\frac{\pi}{6}\right)=\sqrt{2}$, c'est-à-dire $\cos\left(x+\frac{\pi}{6}\right)=\frac{\sqrt{2}}{2}$.

Ceci est équivalent à : $\begin{cases} x+\frac{\pi}{6}&\equiv&\frac{\pi}{4}\left[2\pi\right]\\ \text{ou}&,\text{ c'est-à-dire}\\ x&\equiv&-\frac{\pi}{4}-\frac{\pi}{6}&\equiv\frac{\pi}{12}\left[2\pi\right] \end{cases}$ $x = -\frac{\pi}{4}\left[2\pi\right]$ $x = -\frac{\pi}{4}\left[2\pi\right]$