Chapitre 3 – Vocabulaire des applications

Ι Généralités

Définition

On appelle **application** (ou **fonction**), la donnée de :

- un ensemble de départ E
- $\bullet\,\,$ un ensemble d'arrivée F
- Pour tout $x \in E$, un unique élément $y \in \mathcal{F}$, noté y = f(x) et appelé l'image de x par f.

TODO: Dessin avec des patates

Vocabulaire

- On note $f:E \to F$, ou bien $f: \left\{ \begin{array}{ccc} E & \to & F \\ x & \mapsto & f(x) \end{array} \right.$, ou encore $f:x \in E \mapsto f(x) \in F$
- Si y = f(x), on dit que x est **un** antécédent de y par f.
- On appelle graphe de f le sous-ensemble de $E \times F$ constitué des couples (x, f(x)) pour $x \in E$. $\Gamma_f = \{(x, f(x)) \mid x \in E\} \subset E \times F.$
- On note $\mathcal{F}(E,F)$ ou F^E l'ensemble des applications de E vers F.

- L'expression $f(x) = 2x^3 + \sqrt{x} \frac{1}{x}$ définit une application $f: \mathbb{R}_+^* \to \mathbb{R}$.
- Soit E un ensemble. On définit l'application **identité de** E comme étant id : $\begin{cases} E \to E \\ x \mapsto x \end{cases},$ c'est-à-dire id(x) = x.
- Soit E un ensemble et $A \subset E$ une partie de E. On définit l'**indicatrice** de A dans E, notée $\mathbb{1}_A$, par : $\forall x \in E, \mathbb{1}_A(x) = \begin{cases} 1 & \text{si} \quad x \in A \\ 0 & \text{si} \quad x \notin A \end{cases}$

NB: L'ensemble de départ est E, mais par abus, on omet souvent de préciser l'ensemble d'arrivée, qui peut être $\{0,1\}$ ou \mathbb{R} par exemple.

• Une suite n'est rien d'autre qu'une application avec ℕ comme ensemble de départ!

Une suite n'est rien d'autre qu' une application $u:\begin{cases} \mathbb{N} \to \mathbb{R} \\ n \mapsto u(n) = \frac{5}{3^n} \end{cases}$ correspond à la suite géométrique de premier terme $u_0 = 5$ et de raison q =

• $g: \left\{ \begin{array}{ccc} \mathbb{R} \times \mathbb{R} & \to & \mathbb{R} \\ (x,y) & \mapsto & \sqrt{x^2+y^2} \end{array} \right.$ définit une application, qui correspond à la norme euclidienne d'un

Définition

Soit $f: E \to F$ une application, et $A \subset E$. On définit l'**image** (directe) de A par f, noté f(A), comme étant l'ensemble :

$$f(A) = \{f(x), x \in A\} = \{y \in F \mid \exists x \in A, f(x) = y\} \subset F$$

Exemple

Soit $c: x \in \mathbb{R} \mapsto x^2 \in \mathbb{R}$. On a $c([2;3]) = [4;9], c(\mathbb{R}) = \mathbb{R}^+, c(\mathbb{Z}) = \{\text{carr\'es parfaits}\}.$ On a $\exp(\mathbb{R}_+^* =]1; +\infty[\text{ et }\cos([0;2\pi]) = [-1;1].$

Définition

Soient $f:E \to F$ et $g:F \to G$ deux applications.

On définit la **composée** de f et g, notée $g \circ f$, par $g \circ f$: $\begin{cases} E \to G \\ x \mapsto g(f(x)) \end{cases}$.

 \wedge Attention à l'ordre des compositions! Pour écrire $g \circ f$, l'ensemble d'arrivée de f doit être égal à l'ensemble de départ de g.

Exemple

- Soit $f: x \in \mathbb{R} \mapsto x^2 \in \mathbb{R}$ et $g: x \in \mathbb{R} \mapsto x 1 \in \mathbb{R}$. Alors on a: $g \circ f: x \in \mathbb{R} \mapsto x^2 1$, et $f \circ g: x \in \mathbb{R} \mapsto (x 1)^2 = x^2 2x + 1$. \wedge La composition n'est pas commutative!
- Soit $f: x \in \mathbb{R} \mapsto |x| \in \mathbb{R}$ et $g: x \in \mathbb{R}_+^* \mapsto \ln(x) \in \mathbb{R}$. On ne peut pas définir $g \circ f$ car l'ensemble d'arrivée de f n'est pas égal à (ni même inclus dans) l'ensemble de départ de g! Par contre, on a $f \circ g(x) = |\ln(x)|$ pour tout $x \in]0; +\infty[$. Pour pouvoir écrire $g \circ f$, il faut **restreindre** l'application f à $\widetilde{f}: x \in \mathbb{R}^* \mapsto |x| in \mathbb{R}_+^*$, et alors on peut écrire $g \circ f: x \in \mathbb{R}^* \mapsto \ln(|x|) \in \mathbb{R}$.
- Soit $u: n \in \mathbb{N} \mapsto u_n \in \mathbb{R}$ une suite numérique réelle, et $S: n \in \mathbb{N} \mapsto n+1 \in \mathbb{N}$. Alors la composition de u par S est la suite $u \circ S: n \in \mathbb{N} \mapsto u_{n+1} \in \mathbb{R}$, c'est-à-dire la suite $(u_{n+1})_{n \in \mathbb{N}}$. On appelle S le **décalage d'indice**, ou **shift**.

II Injections, surjections, bijections

Définition

Soit $f: E \to F$ une application. On dit que :

- f est **injective** lorsque deux éléments distincts de E ont toujours des images distinctes : $\forall x, x' \in E, x \neq x' \Longrightarrow f(x) \neq f(x')$ ou manière équivalente : $\forall x, x' \in E, f(x) = f(x') \Longrightarrow x = x'$.
- f est surjective lorsque tout élément de l'ensemble d'arrivée F est atteint par f (admet au moins un antécédent) : $\forall y \in F, \exists x \in E, y = f(x)$, ou de manière équivalente, f(E) = F.
- f est **bijective** lorsque f est simultanément injective et surjective. De manière équivalente : $\forall y \in F, \exists ! x \in E, y = f(x)$.

Dessins avec des patates

Exemple

- L'application $c: x \in \mathbb{R} \mapsto x^2 \in \mathbb{R}$ n'est pas injective, car c(-1) = c(1) = 1. Elle n'est pas surjective, car -1 n'admet pas d'antécédent par c. En fait, $c(\mathbb{R}) = \mathbb{R}^+$
- L'application exp : $\mathbb{R} \to \mathbb{R}$ est injective, puisqu'elle est strictement croissante (pour x < y, on a $e^x < e^y$ donc $e^x \neq e^y$. Par contre, elle est à valeurs strictement positive donc elle n'est pas surjective!
- L'application $\ln :]0; +\infty[\in \mathbb{R}$ est injective (strictement croissante) et surjective! En effet, pour tout $y \in \mathbb{R}$, en prenant $x = e^y$, on a x > 0 et $\ln(x) = \ln(e^y) = y$. Cette application est donc bijective de $[0; +\infty[$ sur \mathbb{R} .
- L'application identité d'un ensemble E est toujours bijective de E dans E.
- L'application $x \in \mathbb{R} \mapsto x^3 \in \mathbb{R}$ est bijective.
- Soit E un ensemble et $A \subset E$. Alors $\mathbb{1}_A : E \to \{0;1\}$ est surjective si et seulement si $A \neq \emptyset$ ou $A \neq E$.

De plus, si E possède au moins 3 éléments, alors $\mathbb 1$ ne peut pas être injective.

Proposition

Une composée d'applications injectives (respectivement surjectives, bijectives) est injective (respectivement surjective, bijective).

Démonstration. • Soient $f: E \to F$ et $g: F \to G$ deux applications.

- On suppose d'abord que f et g sont injectives. Montrons qu'alors $g \circ f$ est injective. Soient $x, y \in E, x \neq y$. Alors par injectivité de f, $f(x) \neq f(y)$, donc par injectivité de g, $g(f(x)) \neq g(f(y))$. D'où l'injectivité de $g \circ f$.
- On suppose maintenant que f et g sont surjectives. Soit $z \in G$. Par surjectivité de g, on dispose de g et g tel que g(g) = g. Mais par surjectivité de g, on dispose alors de g et g tel que g(g) = g. Donc on a g et g et
- Si f et g sont bijectives, alors on a vu que $g \circ f$ est injective, et aussi surjective : elle est bijective.

П

III Application réciproque

Définition

Soit $f: E \to F$ une application **bijective**. Alors on peut définir son **application réciproque** $f^{-1}: F \to E$, qui associe à tout élément $y \in F$ l'unique élément $x \in E$ tel que y = f(x).

Dessin avec des patates

Exemple

- On considère $a:x\in\mathbb{R}\mapsto 3x-2\in\mathbb{R}$. Pour tous $x,y\in\mathbb{R}$, on a: $y=a(x)\iff y=3x-2\iff y+2=3x\iff \frac{y+2}{3}=x.$ Ainsi, pour tout $y\in\mathbb{R}$, il existe un unique $x\in\mathbb{R}$ tel que y=a(x), donné par $x=\frac{y+2}{3}$. Donc a est bijective, et sa réciproque est $a^{-1}:x\in\mathbb{R}\mapsto\frac{1}{3}x+\frac{2}{3}\in\mathbb{R}$.
- La fonction exp est bijective de \mathbb{R} dans \mathbb{R}_+^* . Sa réciproque est la fonction $\ln: \mathbb{R}_+^* \to \mathbb{R}$.
- La fonction $f: x \in \mathbb{R}^+ \mapsto \sqrt{x} \in \mathbb{R}^+$ est bijective. Pour tous $x, y \in \mathbb{R}^+$, on a $y = f(x) \iff y = \sqrt{x} \iff y^2 = x$ (puisque $y \ge 0$). Ainsi, sa réciproque est l'application $f^{-1}: \left\{ \begin{array}{ccc} \mathbb{R}^+ & \to & \mathbb{R}^+ \\ x & \mapsto & x^2 \end{array} \right.$ Il s'agit d'une **restriction** de l'application carrée.

Propriété

Soit $f: E \in {\cal F}$ et $g: F \in {\cal G}$ deux applications bijectives. Alors :

- $f^{-1} \circ f = \mathrm{id}_E$ et $f \circ f^{-1} = \mathrm{id}_F$.
- f^{-1} est bijective, et $(f^{-1})^{-1} = f$.
- $g \circ f$ est bijective, et sa réciproque est $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Démonstration. • Par définition de f^{-1} !

- Soient $y, y' \in F$. tels que $f^{-1}(y) = f^{-1}(y')$. Alors $f(f^{-1}(y)) = f(f^{-1}(y'))$ donc y = y'. D'où l'injectivité. Soit $x \in E$. On a $x = f^{-1}(f(x))$, donc $x \in f^{-1}(F)$. D'où la surjectivité. Enfin, par définition, l'unique antécédent de x par f^{-1} est f(x), donc on a bien $(f^{-1})^{-1} = f$.
- $g \circ f$ est bijective comme composée de 2 bijections. De plus, on a, pour $z \in G$ et $x \in E$: $z = g(f(x)) \iff g^{-1}(z) = f(x) \iff f^{-1}\left(g^{-1}(z)\right) = x$. Donc $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

IV Vocabulaire des applications de \mathbb{R} dans \mathbb{R}

On s'intéresse dans cette partie aux applications dont les ensembles de départ et d'arrivée sont inclus dans \mathbb{R} . Dans toute la suite, on prendra $E, F \subset \mathbb{R}$.

L'ensemble des nombres réels dispose d'une **structure** spécifique, avec des opérations $(+, -, \times, \div)$ et un ordre (\leq) , qui rendent plus riche l'étude des applications de $\mathbb R$ dans $\mathbb R$.

Remarquons déjà que les opérations se transmettent aux fonctions, et qu'on pourra écrire pour toutes fonctions $f,g:E\to\mathbb{R}:f+g,f-g,f\times g$ et, si g ne s'annule pas, $\frac{f}{g}$.

Notons aussi que le graphe de ces fonctions est une partie de $\mathbb{R} \times \mathbb{R}$, c'est-à-dire un ensemble de points du plan, qui peut donc être représenté dans le plan.

1. Fonctions et ordre

Définition

Soit $f: E \to \mathbb{R}$. On dit que :

- f est majorée si f(E) est majorée, c'est-à-dire : $\exists M \in \mathbb{R}, \forall x \in E, f(x) \leq M$.
- f est **minorée** si f(E) est minorée, c'est-à-dire : $\exists m \in \mathbb{R}, \forall x \in E, f(x) \geq m$.
- f est **bornée** si f(E) est bornée, c'est-à-dire : $\exists m, M \in \mathbb{R}, \forall x \in E, m \leq f(x) \leq M$. De manière équivalente, f est bornée si : $\exists M \in \mathbb{R}, \forall x \in E, f(x) \in [-M, M]$.

Exemple

- exp est minorée (par 0) mais non majorée donc non bornée.
- cos et sin sont bornées car elles sont à valeurs dans [-1, 1].
- La fonction $x \mapsto x^3$ n'est ni minorée ni majorée sur \mathbb{R} .

Définition

Soit $f: E \to \mathbb{R}$. On dit que :

- f est **croissante** (sur E) lorsque : $\forall x, y \in E, (x \le y \Longrightarrow f(x) \le f(y).$
- f est **décroissante** (sur E) lorsque : $\forall x, y \in E, (x \le y \Longrightarrow f(x) \ge f(y)$.
- f est monotone (sur E) lorsque f est soit croissante soit décroissante sur E.

Remarque. • Une fonction croissante conserve l'ordre, une fonction décroissante inverse l'ordre.

- Une fonction constante est à la fois croissante et décroissante.
- On définit de même les fonctions **strictement** (dé)croissantes, en remplaçant les inégalités larges par des inégalités strictes.

Exemple

- exp est strictement croissante sur \mathbb{R} .
- $x \mapsto x^2$ est non monotone sur \mathbb{R} . Elle est strictement décroissante sur \mathbb{R}^- et strictement croissante sur \mathbb{R}^+ .
- cos et sin sont non monotones sur \mathbb{R}
- Une fonction affine est toujours monotone, son sens de variation dépendant du signe de sa pente.

2. Périodicité et symétries

Parité et périodicité Graphe de la réciproque

Définition

Soit $f: E \to \mathbb{R}$ avec $E \subset \mathbb{R}$ symétrique par rapport à 0, c'est à dire que $\forall x \in E, -x \in E$. On dit que :

- f est **paire** si $\forall x \in E, f(-x) = f(x)$.
- f est impaire si $\forall x \in \hat{1}E, f(-x) = -f(x)$.

Remarque. • Une fonction est paire si et seulement si son graphe dans un repère orthonormé est symétrique par rapport à l'axe des ordonnées.

• Une fonction est impaire si et seulement si son graphe dans un repère orthonormé est symétrique par rapport à l'origine.

Exemple

La fonction $x \mapsto x^2$ définie sur \mathbb{R} est paire. La fonction $x \mapsto x^3$ est impaire. La fonction exp n'est ni paire ni impaire.

Définition

Soit $f : \mathbb{R} \to \mathbb{R}$ et $T \in \mathbb{R}$. On dit que f est T-périodique si : $\forall x \in \mathbb{R}, f(x+T) = f(x)$. On dit que f est périodique s'il existe une **période** $T \in \mathbb{R}$ telle que f est T-périodique.

Exemple

L'exemple par excellence est celui des fonctions trigonométriques : cos et sin sont 2π -périodiques! La fonction partie fractionnaire $x\mapsto x-\lfloor x\rfloor$ est 1-périodique.

La fonction exponentielle est strictement croissante sur \mathbb{R} , donc elle ne peut pas être périodique.

Proposition

Soient $E, F \subset \mathbb{R}$, et $f : E \to F$ une application bijective. Alors les graphes de f et de f^{-1} en repère orthonormé sont symétrique l'un de l'autre par rapport à la diagonale $\Delta = \{(x, x) \mid x \in \mathbb{R}\}.$

Exemple

TODO: tikz? Exp et logarithme népérien. Racine carrée et restriction de $x \mapsto x^2$ à \mathbb{R}^+ .