Chapitre 4 – Fonctions usuelles réelles

I Fonctions polynomiales et puissances entières

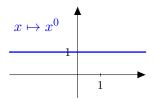
1. Fonctions puissances $x \mapsto x^n$

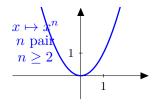
Soit $n \in \mathbb{Z}$. On considère la fonction $f: x \mapsto x^n$.

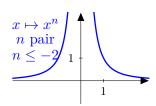
Proposition

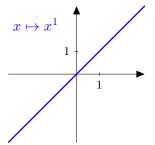
Pour n=0, f est la fonction constante égale à 1. Pour $n\neq 0$:

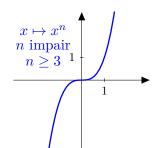
- f est définie sur \mathbb{R} si $n \geq 0$, et sur \mathbb{R}^* si n < 0.
- f a la même parité que n.
- f est continue et dérivable sur son ensemble de définition, et sa dérivée est $f'(x) = nx^{n-1}$.

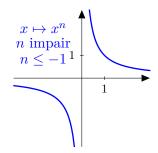












2. Fonctions polynomiales

On rappelle qu'une fonction polynomiale est une fonction de la forme $x \mapsto a_0 + a_1x + a_2x^2 + \ldots + a_nx^n$ avec $n \in \mathbb{N}, a_0, \ldots, a_n \in \mathbb{R}$ et $a_n \neq 0$.

Proposition

Soit f une fonction polynomiale de la forme ci-dessus. Alors :

- f est définie, continue et dérivable sur \mathbb{R} .
- $\lim_{x\to\pm\infty} f(x) = \lim_{x\to\pm\infty} a_n x^n$.

Démonstration. Le premier point se fait par opérations : c'est une somme de fonctions toutes continues et dérivables sur \mathbb{R} .

Pour le second point, on factorise par le monôme de plus haut degré :

$$\forall x \neq 0 : f(x) = a_n x^n \left(a_0 \frac{1}{x^n} + a_1 \frac{x}{x^n} + \dots + a_{n-1} \frac{x^{n-1}}{x^n} + 1 \right)$$
$$= a_n x^n \left(\frac{a_0}{x^n} + \frac{a_1}{x^{n-1}} + \dots + \frac{a_{n-1}}{x} + 1 \right)$$

En $\pm \infty$, tous les termes $\frac{a_k}{x^{n-k}}$ tendend vers 0, donc la parenthèse converge vers 1.

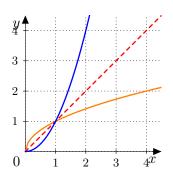
D'où finalement : $\lim_{x\to\pm\infty} f(x) = \lim_{x\to\pm\infty} a_n x^n$.

3. Racine carrée

La fonction racine carrée est la **réciproque** de la fonction bijective $x \in \mathbb{R}^+ \mapsto x^2 \in \mathbb{R}^+.$

Elle est:

- définie et continue sur \mathbb{R}^+
- dérivable sur \mathbb{R}_+^* , de dérivée $x \mapsto \frac{1}{2\sqrt{x}}$.



TT Exponentielles et logarithmes

Exponentielle et logarithme népérien

Théorème

Il existe une unique fonction $f: \mathbb{R} \to \mathbb{R}$ dérivable sur \mathbb{R} et vérifiant : $\begin{cases} \forall x \in \mathbb{R}, f'(x) = f(x) \\ f(0) = 1 \end{cases}$

$$\begin{cases} \forall x \in \mathbb{R}, f'(x) = f(x) \\ f(0) = 1 \end{cases}$$

Définition

On appelle cette fonction la fonction **exponentielle**, et on la note $f(x) = \exp(x) = e^x$.

Remarque. Par définition, exp est dérivable sur \mathbb{R} et $\exp'(x) = \exp(x)$ pour tout $x \in \mathbb{R}$. $e^0 = 1, e^1 = e \approx 2,718.$

Les propriétés algébriques de l'exponentielle ont été revues au chapitre précédent : ce sont les mêmes que celles des puissances.

Proposition

La fonction exponentielle est strictement positive et strictement croissante sur \mathbb{R} . On a :

$$\bullet \quad \lim_{x \to -\infty} e^x = 0$$

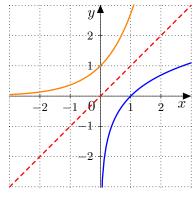
•
$$\lim_{x \to +\infty} e^x = +\infty$$

Définition

La fonction exponentielle est bijective de \mathbb{R} dans \mathbb{R}_+^* (c'est une conséquence du théorème de la bijection continue qu'on verra plus tard dans

On définit la fonction logarithme népérien, notée ln, comme étant sa réciproque :

$$\ln : \begin{cases}
\mathbb{R}_+^* \to \mathbb{R} \\
x \mapsto \ln(x)
\end{cases}$$



Remarque. Par définition, on a pour tout $x \in \mathbb{R}$ et tout $y \in \mathbb{R}_+^* : y = e^x \iff x = \ln(y)$.

Ainsi, ln(1) = 0, ln(e) = 1.

On a déja vu les propriétés algébriques du logarithme népérien. Elles découlent de celles de l'exponentielle par passage à la réciproque.

Proposition

- La fonction ln est dérivable sur \mathbb{R}_+^* , de dérivée donnée par : $\forall x > 0, \ln'(x) = \frac{1}{x}$.
- La fonction ln est strictement croissante sur \mathbb{R}_+^* , et change de signe en 1.
- $\lim_{x\to 0^+} \ln(x) = -\infty$ et $\lim_{x\to +\infty} \ln(x) = +\infty$

Remarque. Pour tout a > 0 et $p \in \mathbb{Z}$, on a $a^p = \left(e^{\ln(a)}\right)^p = e^{p\ln(a)}$

Définition

Pour tout $a \in \mathbb{R}_+^*$ et tout $b \in \mathbb{R}$, on définit a^b comme étant le nombre :

$$a^b = e^{b\ln(a)}$$

Remarque. On a généralisé la définition de la puissance, au paravant définie uniquement pour les exposants entiers.

 \wedge Cette nouvelle notation n'est valable que pour les a strictement positifs!

Règle de calcul

On retrouve les règles de calcul déjà connues sur les puissances. Pour tous $a,b\in\mathbb{R}_+^*$ et tout $\alpha,\beta\in\mathbb{R}$:

•
$$a^{\alpha}a^{\beta} = a^{\alpha+\beta}$$

•
$$\frac{a^{\alpha}}{a^{\beta}} = a^{\alpha - \beta}$$

•
$$(a^{\alpha})^{\beta} = a^{\alpha\beta}$$

•
$$a^{\alpha}b^{\alpha} = (ab)^{\alpha}$$

$$\bullet \quad \frac{a^{\alpha}}{b^{\alpha}} = \left(\frac{a}{b}\right)^{\alpha}$$

Démonstration. On revient à la définition à chaque fois!

2. Puissances quelconques

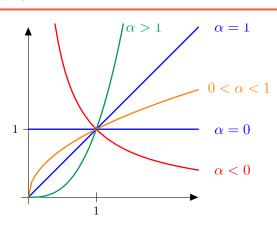
Proposition

Soit $\alpha \in \mathbb{R}$. On considère la fonction $x \mapsto x^{\alpha}$. Alors :

- f est définie et dérivable sur \mathbb{R}_+^* . Pour tout $x \in \mathbb{R}_+^*$, on a : $f'(x) = \alpha x^{\alpha-1}$.
- f Strictement positive sur \mathbb{R}_+^* .
- Si $\alpha > 0$: f est strictement croissante sur \mathbb{R}_+^* , $\lim_{x \to 0^+} x^{\alpha} = 0$ et $\lim_{x \to +\infty} x^{\alpha} = +\infty$.
- Si $\alpha < 0$: f est strictement décroissante sur \mathbb{R}_+^* , $\lim_{x \to 0^+} x^{\alpha} = +\infty$ et $\lim_{x \to +\infty} x^{\alpha} = 0$.

Remarque. • Si $\alpha = 0$, f est la fonction constante égale à 1.

- Pour tout $\alpha > 0$, on peut prolonger la fonction f en 0 par continuité, en posant $f(0) = 0^{\alpha} = 0$. Par contre, la fonction obtenue n'est a priori pas dérivable en 0!
- Pour tout x > 0, on a $\sqrt{x} = x^{\frac{1}{2}}$ et $\sqrt[3]{x} = x^{\frac{1}{3}}$.



3. Exponentielles et logarithmes dans d'autres bases

Soit $a \in \mathbb{R}_+^*$.

Définition

On appelle fonction exponentielle en base a la fonction $x \in \mathbb{R} \mapsto a^x = e^{x \ln(a)}$.

Proposition

La fonction exponentielle en base a est dérivable sur \mathbb{R} , de dérivée donnée par $x \mapsto (\ln(a))a^x$. Elle est strictement positive et monotone sur \mathbb{R} :

- Si a>1, elle est strictement croissante sur \mathbb{R} , $\lim_{x\to -\infty}a^x=0$ et $\lim_{x\to +\infty}a^x=+\infty$.
- Si a=1, c'est la fonction constante égale à 1 sur $\mathbb R.$
- Si a<1, elle est strictement décroissante sur \mathbb{R} , $\lim_{x\to-\infty}a^x=+\infty$ et $\lim_{x\to+\infty}a^x=0$.

Remarque. Soient $x \in \mathbb{R}$ et $y \in \mathbb{R}_+^*$. On a :

$$a^{x} = y \iff e^{x \ln(a)} = y$$

 $\iff x \ln(a) = \ln(y)$
 $\iff x = \frac{\ln(y)}{\ln(a)}$ si $a \neq 1$

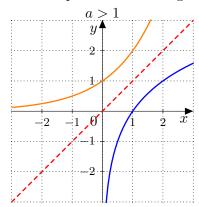
Ainsi (si $a \neq 1$): pour tout y > 0, il existe un unique réel x tel que $a^x = y$, et ce réel est donné par $x = \frac{\ln(y)}{\ln(a)}$.

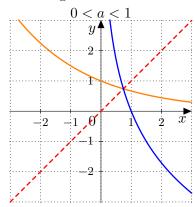
Définition

Si $a \neq 1$, on définit la fonction **logarithme en base** a, notée \ln_a , comme étant la fonction $: x \in \mathbb{R}_+^* \mapsto \ln_a(x) = \frac{\ln(x)}{\ln(a)}$.

Il s'agit de la fonction réciproque de l'exponentielle en base a.

Remarque. On utilise le plus souvent le logarithme en base 10, et parfois le logarithme en base 2.





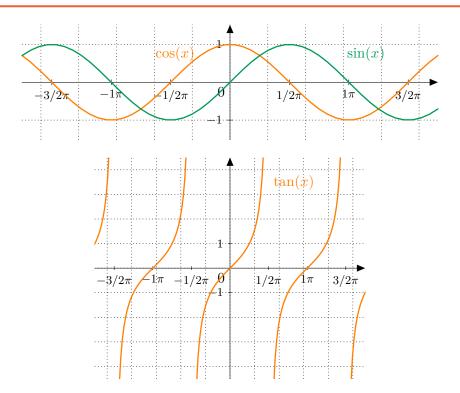
III Fonctions trigonométriques

1. Cosinus, Sinus, Tangente

Proposition

Les fonctions cosinus et sinus sont :

- Définies sur \mathbb{R} ;
- 2π -périodiques;
- Dérivables sur \mathbb{R} , de dérivée respective : $\sin' = \cos$ et $\cos' = -\sin$.
- La fonction cosinus est paire, et la fonction sinus est impaire.



Proposition

La fonction tangente est :

- Définie sur $\mathbb{R}\setminus\left\{\frac{\pi}{2}+k\pi\mid k\in\mathbb{Z}\right\}$ par $\tan(x)=\frac{\sin(x)}{\cos(x)}$
- π -périodique et impaire;
- Dérivable sur son domaine de définition, avec $\tan' = \frac{1}{\cos^2} = 1 + \tan^2$
- Strictement croissante sur $\left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$.
- $\lim_{x \to -\frac{\pi}{2}^+} \tan(x) = -\infty$ et $\lim_{x \to \frac{\pi}{2}^-} \tan(x) = +\infty$.

2. Fonctions trigonométriques réciproques (HP)

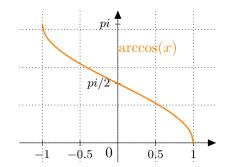
Définition

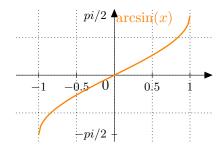
On définit la fonction arccosinus, notée arccos, cos⁻¹ ou acos, comme étant la réciproque de la bijection induite par la fonction cosinus entre [0, π] et [-1, 1].
 On a donc arccos: [-1, 1] → [0, π] et pour tout x ∈ [-1, 1] arccos(x) est l'unique réel u ∈ [0, π].

On a donc $arccos : [-1, 1] \to [0, \pi]$, et pour tout $x \in [-1, 1]$, arccos(x) est l'unique réel $y \in [0, \pi]$ qui vérifie cos(y) = x.

• On définit la fonction **arcsinus**, notée arcsin, \sin^{-1} ou asin, comme étant la réciproque de la bijection induite par la fonction sinus entre $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ et $\left[-1, 1\right]$.

On a donc arcsin : $[-1,1] \to [-\frac{\pi}{2},\frac{\pi}{2}]$, et pour tout $x \in [-1,1]$, arcsin(x) est l'unique réel $y \in [-\frac{\pi}{2},\frac{\pi}{2}]$ qui vérifie $\sin(y) = x$.





Propriété

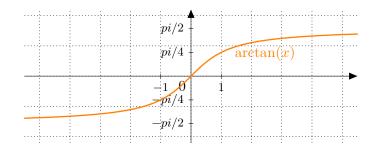
- La fonction arccos est bijective et strictement décroissante.
- La fonction arcsin est bijective, impaire et strictement croissante.
- De plus (Hors Programme) : ces deux fonctions sont continues sur [-1,1], dérivables sur]-1,1[et non dérivables en 1 et -1.

Leur dérivée est donnée par : $\forall x \in]-1,1[$, $\arccos'(x) = \frac{-1}{\sqrt{1-x^2}}$ et $\arcsin'(x) = \frac{1}{\sqrt{1-x^2}}$

Définition

On définit la fonction **arctangente**, notée arctan, \tan^{-1} ou atan, comme étant la réciproque de la bijection induite par la fonction tangente entre $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$ et \mathbb{R} .

On a donc $\operatorname{arccos}: \mathbb{R} \to \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$, et pour tout $x \in \mathbb{R}$, $\operatorname{arctan}(x)$ est l'unique réel $y \in \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$ qui vérifie $\tan(y) = x$.



Propriété

La fonction arctan est bijective, impaire et strictement décroissante.

Elle est dérivable sur \mathbb{R} , et sa dérivée est donnée par : $\arctan'(x) = \frac{1}{1+x^2}$.

Enfin, on a : $\lim_{x \to +\infty} \arctan(x) = \frac{\pi}{2}$ et $\lim_{x \to -\infty} \arctan(x) = -\frac{\pi}{2}$.

IV Fonctions valeur absolue et partie entière

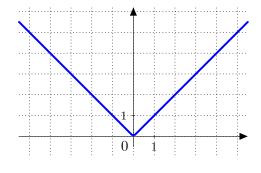
Propriété

La fonction valeur absolue : | . | : $x \in \mathbb{R} \mapsto |x|$ est :

- paire et continue sur \mathbb{R}
- \bullet non dérivable en 0
- dérivable en tout point de \mathbb{R}^*

Sa dérivée donnée par : $\forall x \in \mathbb{R}^*$:

$$|\cdot|'(x) = \begin{cases} 1 & \text{si } x > 0 \\ -1 & \text{si } x < 0 \end{cases}$$



Propriété

La fonction partie entière : $\lfloor \ . \ \rfloor : x \in \mathbb{R} \mapsto \lfloor x \rfloor$ est :

- discontinue en tout point de \mathbb{Z} ;
- continue et dérivable en tout point de $\mathbb{R}\setminus\mathbb{Z}$, de dérivée nulle en chacun de ces points.

TODO: Graphes de la partie entière et de la partie fractionnaire.

Rappels sur les dérivées et les limites

Théorème

Soient $u, v: I \to \mathbb{R}$ deux fonction dérivables sur un intervalle I, et $\lambda \in \mathbb{R}$. Alors :

- u + v est dérivable sur I, et (u + v)' = u' + v'
- λu est dérivable sur I, et $(\lambda u)' = \lambda \times u'$
- $u \times v$ est dérivable sur I, et $(u \times v)' = u'v + v'u$
- Si v ne s'annule pas sur I, alors $\frac{1}{v}$ est dérivable sur I, et $\left(\frac{1}{v}\right)' = \frac{-v'}{v'^2}$
- Si v ne s'annule pas sur I, alors $\frac{u}{v}$ est dérivable sur I, et $\left(\frac{u}{v}\right)' = \frac{u'v v'u}{v^2}$.

Théorème

Soient I, J deux intervalles, et $f: I \to \mathbb{R}, g: J \to \mathbb{R}$ deux fonctions dérivables.

On suppose que : $\forall x \in I, f(x) \in J$.

Alors la composée $g \circ f$ est bien définie sur I, dérivable sur I, et vérifie :

$$(g \circ f) = f' \times (g' \circ f)$$

À savoir : $\forall x \in I, (g \circ f)'(x) = f'(x) \times g'(f(x))$

Corollaire

Il faut absolument connaître les dérivées des composées usuelles : u^n , \sqrt{u} , e^u , $\ln(u)$, u^α .

Théorème

Soit $u: I \to J$ bijective et dérivable sur un intervalle I, à valeurs dans un intervalle J. Si la dérivée u' ne s'annule pas sur I, alors $u^{-1}: J \to I$ est dérivable sur I, et on a :

$$(u^{-1})' = \frac{1}{u' \circ u^{-1}}$$

À savoir: $\forall y \in J, (u^{-1})'(y) = \frac{1}{u'(u^{-1}(y))}$

Propriété (Croissances comparées)

•
$$\lim_{x \to +\infty} \frac{\ln(x)}{x} = 0$$
 et plus généralement, $\lim_{x \to +\infty} \frac{(\ln(x)^{\alpha}}{x^{\beta}} = 0$
• $\lim_{x \to +\infty} \frac{x}{\exp(x)} = 0$ et plus généralement, $\lim_{x \to +\infty} \frac{(\ln(x)^{\alpha})}{(\exp(x))^{\beta}} = 0$
• $\lim_{x \to +\infty} \frac{\ln(x)}{\exp(x)} = 0$ et plus généralement, $\lim_{x \to +\infty} \frac{(\ln(x)^{\alpha})}{(\exp(x))^{\beta}} = 0$

•
$$\lim_{x \to +\infty} \frac{x}{\exp(x)} = 0$$
 et plus généralement, $\lim_{x \to +\infty} \frac{(x^{\alpha})}{(\exp(x))^{\beta}} = 0$

Soient
$$\alpha, \beta > 0$$
. $\lim_{x \to +\infty} \frac{\ln(x)}{\exp(x)} = 0$ et plus généralement, $\lim_{x \to +\infty} \frac{(\ln(x))^{\alpha}}{(\exp(x))^{\beta}} = 0$

•
$$\lim_{x\to-\infty} x \exp(x) = 0$$
 et plus généralement, $\lim_{x\to-\infty} x^{\alpha} (\exp(x))^{\beta} = 0$

•
$$\lim_{x \to -\infty} \ln(|x|) \exp(x) = 0$$
 et plus généralement, $\lim_{x \to -\infty} (\ln(|x|)^{\alpha} (\exp(x))^{\beta}) = 0$

•
$$\lim_{x\to 0^+} x \ln(x) = 0$$
 et plus généralement, $\lim_{x\to 0^+} x^{\alpha} (\ln(x))^{\beta} = 0$

Retenez bien que : en $+\infty$, $\ln(x)^{\alpha} \ll x^{\beta} \ll \exp(x)^{\gamma}$

VI Méthodes pour l'étude d'une fonction réelle

On donne souvent à étudier une fonction définie uniquement par son expression f(x). L'objectif de ce paragraphe est de donner des méthodes générales pour l'étude et le tracé d'un graphe.

1. Domaine de définition

Le domaine de définition d'une fonction donnée par son expression f(x) est l'ensemble de toutes les valeurs de $x \in \mathbb{R}$ pour lesquelles l'expression f(x) a un sens.

Il faut faire particulièrement attention lorsque la variable x est présente : au dénominateur d'une fraction, dans une racine, dans un logarithme, ...

Exemple

Soit
$$f: x \mapsto \ln\left(\frac{x-2}{x+1}\right)$$
.

Cette expression impose deux contraintes:

1.
$$x + 1 \neq 0$$

$$2. \ \frac{x-2}{x+1} > 0$$

La première contrainte d'écrit simplement $x \neq -1$. Quant à la seconde, on peut résoudre simplement l'inéquation à l'aide d'un tableau de signes, et obtenir $\mathcal{S} =]-\infty; -1[\cup]2; +\infty[$.

Ainsi, le domaine de définition de f est $\mathcal{D} =]-\infty; -1[\cup]2; +\infty[$.

2. Restriction du domaine d'étude (arguments de symétrie)

Les symétries et périodicités éventuelles d'une fonction permettent de simplifier son étude en restreignant le domaine sur lequel on l'étudie. En effet :

- Si une fonction est paire ou impaire, il suffit de l'étudier sur \mathbb{R}^+ (ou \mathbb{R}^-). Son comportement sur l'autre moitié de son domaine de définition s'en déduit par symétrie.
- De même, si une fonction est T-périodique avec $T \in \mathbb{R}^*$, il suffit d'étudier la fonction sur un intervalle de longueur T (par exemple [0;T]).

Exemple

La fonction $x \mapsto \tan(x)$ est impaire et π -périodique.

Le caractère π -périodique permet de réduire le domaine d'étude à l'intervalle $\left]-\frac{\pi}{2};\frac{\pi}{2}\right[$.

Ensuite, le caractère impair permet de réduire encore cet intervalle (qui est symétrique par rapport à

0) : il suffit d'étudier la fonction sur $I = \left[0; \frac{\pi}{2}\right]$

3. Tableau de variations

Le théorème suivant est connu depuis la première et sera démontré plus tard dans l'année :

Théorème

Soit [a, b] un intervalle, et $f: [a, b] \to \mathbb{R}$ une fonction continue, dérivable sur l'intervalle [a, b].

- f est constante sur $[a,b] \iff \forall x \in]a,b[,f'(x)=0$
- f est croissante sur $[a,b] \iff \forall x \in]a,b[,f'(x) \geq 0$
- f est décroissante sur $[a,b] \iff \forall x \in]a,b[,f'(x) \leq 0$

On peut alors dresser le tableau de variations de f, qu'on complète en déterminant ses extrema et ses limites aux bornes de l'ensemble de définition.

4. Méthodes pour tracer un graphe

L'étude d'une fonction aboutit souvent au tracé de sa courbe représentative dans un repère orthogonal. On donne ici les éléments principaux à savoir pour ce faire.

Vocabulaire (asymptotes verticales et horizontales)

Soit $l \in \mathbb{R}$. Lorsque $f(x) \underset{x \to +\infty}{\longrightarrow} l$, la courbe représentative de f se rapproche arbitrairement de la droite horizontale d'équation y = l en $+\infty$.

On dit alors que cette droite est une **asymptote horizontale** de la courbe. Soit $a \in \mathbb{R}$. Lorsque $f(x) \underset{x \to a^{\pm}}{\longrightarrow} \pm \infty$, la courbe représentative de f se rapproche arbitrairement de la droite verticale d'équation x = a lorsque x tend vers a (à gauche ou à droite).

On dit alors que cette droite est une asymptote verticale de la courbe.

Proposition (équation de la tangente)

Soit $f:I\to\mathbb{R}$ une fonction définie sur un intervalle I, et dérivable en un point $a\in I.$

Alors la courbe représentative de f admet une tangente en a, qui passe par le point $M_a(a, f(a))$ et de pente f'(a). Son équation est :

$$y = f(a) + f'(a)(x - a)$$

Pour représenter la courbe représentative d'une fonction dans un repère orthogonal, après avoir déterminé son domaine de définition et dressé son tableau de variations :

- 1. On se place sur le domaine d'étude.
- 2. On trace les éventuelles asymptotes et on étudie, en cas de doute, les positions relatives de la courbe par rapport à celles-ci.
- 3. On place les points et tangentes remarquables et on étudie, en cas de doute, les positions relatives de la courbe par rapport à ses tangentes.
- 4. Si nécessaire, on place quelques points particuliers pour plus de précision.
- 5. On trace la courbe sur le domaine d'étude puis, le cas échéant, on la complète sur le domaine de définition à l'aide des symétries/périodicités.

Exemple

Étudions la fonction définie par $f(x) = \frac{1-x^2}{2x}$.

- 1. Domaine de définition : \mathbb{R}^* .
- 2. Symétries et périodicités : Pour tout $x \in \mathbb{R}$, $f(-x) = \frac{1 (-x)^2}{-2x} = \frac{1 x^2}{-2x} = -f(x)$. f est donc impaire, et on peut restreindre l'étude au domaine $\mathcal{D}_{et} =]0, +\infty[$.
- 3. Variations : Par opération (quotient), la fonction f est dérivable sur son domaine de définition. On a, pour tout $x \in \mathcal{D}_f$:

$$f'(x) = \frac{-2x(2x) - 2(1 - x^2)}{(2x)^2}$$
$$= \frac{-4x^2 - 2 + 2x^2}{4x^2}$$
$$= \frac{-2x^2 - 2}{4x^2}$$
$$= \frac{-2(x^2 + 1)}{4x^2} < 0$$

Ainsi, le tableau de variations de f sur \mathcal{D}_{et} est le suivant : **TODO** : tableau

De plus:

- $\lim_{x\to 0^{\pm}} f(x) = \pm \infty$ par opération sur les limites.
- Pour tout $x \in \mathbb{R}^*$, $f(x) = \frac{x^2(\frac{1}{x}-1)}{2x} = x\frac{\frac{1}{x}-1}{2}$, donc par opération :

On a donc une **asymptote** verticale d'équation x = 0, et pas d'asymptote horizontale.

4. Points et tangentes remarquables : Pour x=1, on a : f(1)=0 et $f'(1)=\frac{-2(1^2+1)}{4\times 1^2}=$

 $\frac{-4}{4}=-1.$ On place donc sur le graphe le point de coordonnées (1,0) et la tangente associée, d'équation :

5. TODO: tracer le graphe, en complétant par imparité.