DS 5 — Maths & Info

Corrigé
Exercice 1.
1. Calcul d’intégrales :
2 1 1 2 1 1 7? 1/1
—— dr = |=x —2z+1 = — = ——(=—-1) =
a)/o Grrp = g Xt L 4[(2904—1)] 4(52 )
24 [6
4x25 |25(

b) On pose u = €', et donc du = e'dt. u va alors de 1 a e, et Uintrégrale devient :

1 T L1 e 1
/ dt = [ et = cdt = [ ——du
o 1+et 0o (I+et)et 0o e+1 1 u+1

1 1 1
D’oﬁ/o ———dt = [nfu+ ) = ln(e + 1) ~1n(2) = |In (6"; )

1 2 2
2. a) Soient a,b € R. On a a+ b :a( +x)+b:a$ —i—a—{—b'

1+ 22 14 22 1+ 22
Par identification, on cherche donc a,b € R qui vérifient a = 1 et a + b = 0. Ainsi :
‘a =1 et b = —1| conviennent.
-1
D’ou : Vx € R,

- =1 4+
1+ a2 1+ a2
b) On sait qu’une primitive sur R de la fonction x +— xzArctan(x) est donnée par la fonction

T /z tArctan(t)dt.
0

Calculons cette intégrale. Soit x € R fixé.
2

t
On définit, pour tout ¢ € R, u(t) = Arctan(t) et v(t) = 7 Alors les fonction u et v

sont de classe C!, et pour tout t € R : u/(t) = e et v'(t) = t.
Par intégration par parties, on a alors :
/ tArctan(t)dt = / w(t)v'(t)dt
0 0
= [w(e()s — [ W@ty
0
t2 T T t2
= —Arctan(t) - / —dt
2 2(1+t?)
2
%Arctan —0—= / ( o 1) dt  selon la question précédente

2

1 1
= %Arctan(:c) — §(x —0)+ 5 [Arctan(t)];

2 Arct
= %Arctan(x) ~Iy rc;n(x) -

puisque Arctan(0) =0
Ainsi, une primitive sur R de la fonction z — xArctan(x) est la fonction :
z?Arctan(x) — x + Arctan(x)
2
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Exercice 2.

—2u, +5
On considére la suite (u,)n,en € RN définie par ug = 8, et pour tout n € N, u, 41 = u3+
1. def suite_u(n):
if n ==
return 8
else:
return (-2 * suite_u(n) + 5)/3
. . " L . -2 5
. (uy,) est une suite arithmético-géométrique, puisque pour tout n € N, on a u, 1 = ?u”+§
—2l+5
On résout I'équation | = d’inconnue [ € R. Pour tout [ € R, on a :
—2l+5
I=— = 3l=-2+45 < 5l=5 — [I=1]
Posons alors la suite (v,,)nen définie par : Vn € N, v, = u,, — = u,, — 1.
—2u, +5 —2l+5 -2 2
Pour tout n € N, on a : v,11 = up1 — 1 = — = "(u, —1) = —=v,.
ur tout n na: Uy = Uyt 3 ) 3 3(u ) 7Y
La suite (v,,) est donc géométrique de raison ¢ = —3 et de premier terme vg = ug—1=17.
2 n
Ainsi, on sait que pour tout n € N, v,, = 7 X (—3> :
2 n
Enfin, on a donc : |Vn € Nyu,, =v, +1 =7 X (—3) + 1]
. P . 2
. La suite (v,) est géométrique de raison g = -3 €] — 1, 1], donc elle converge vers 0.

Ainsi, par somme, |la suite (u,) converge vers 1|.

:n =0

while abs(suite_u(mn) - 1) >= 10**x(-6):
n += 1
print (n)

n n k n k n
.SoitnEN.Ona:Zuk:Z<7x<—2) +1>:7Z(_2) +Zl
3 o\ 3 k=0

k=0 k=0
On a la somme de termes d’une suite géométrique et une somme constante, donc on obtient :

Zn:uk=7>< (_32 _(_g) +(n+1).

n+1
Finalement : En:uk:n+1+7>< 1_(_53):7%1—14—251(1— (—%))nH.
k=0 3
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Exercice 3.

3 -1 -1
On souhaite étudier I'inversibilité et les puissances de la matrice A= | -1 3 -1
11 -5 =5 b e
1.Ona A2=AxA=|-5 11 =5
-5 =5 11
a4+ —« —«
Or A + (13 = —a 3a+pf —«
-« —a  3a+p

En identifiant les coefficients dans deux matrices, on cherche donc «, 5 € R qui vérifient
—a=-b,donca=5et3a+pF=11,donc =11 —-3a=11—-15=—4
Finalement : | A2 = 5A — 415 |.

1
2. On a ~1 (A2 —5A) = I3, donc A (—%(A — 513)) = Is.

1
Ainsi, la matrice A est bien inversible, avec pour inverse | A7! = 1 (A—513) |
] -2 -1 -1 ] 2 11
On a donc : A~! = ~1 -1 -2 1| = 1 1 21
-1 -1 -2 1 1 2

3. Pour tout n € N, notons P, la propriété : "il existe a,,b, € R tels que A" = a,A + b, 13"
Montrons par récurrence que P, est vraie pour tout n € N.

o Initialisation (n = 0). A = I3 = 0A + 113, donc ag = 0 et by = 1 conviennent. La
propriété Py est bien vraie.

o Hérédité. Soit n € N tel que la propriété P, est vraie. On dispose donc de a,,b, € R
tels que A™ = a,, A + b,15. Alors :
Al = A" x A = (a, A+ b,I3)A = a,A* + b, A
Comme A% =54 — 4I3, on a : A" = q,(5A — 413) + b, A = (5a, + b,)A — 4a,Is.
Ainsi, les réels a,,.1 = 5a,, + b, et b,,1 = —4a, conviennent, et P, est bien vraie.

e Par principe de récurrence, on a bien ’existence de réels a,, b, qui conviennent pour
tout n € N.

4. On note (a,) et (b,) les suites obtenues a la question précédente, qui sont donc définies par
récurrence de la maniere suivante : ag = 0, by = 1, et pour tout n € N :

ap41 = 5an+bn
bn+1 = —da,

a) Pour tout n € N, on a : ‘amg = Bay i1 + bpy1 = daps1 — 4a, ‘

On a bien une relation de récurrence linéaire d’ordre 2 pour la suite (ay,).
b) On pose 'équation caractéristique (E.) : 2% — 5z + 4 = 0.
Son discriminant est A = (=5)2 —4x4=25—-16=9 > 0.

L’équation caractéristique admet donc deux solutions réelles distinctes, données par

5—3 o+3
qlszletqQZ?:éL

Ainsi, il existe, A\, 4 € R tels que pour tout n € N : a,, = A1™ + ud™ =X + pd”".
Or on sait que ag = 0 et que a; = bag + by = 1.
Donc A\ +pu=ap=0et A\+4p=a; =1.
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W

A =0 A =0 poo=
Or:{ Tt S { th B <= 1 D’ou finalement :

A4y =1 3u =1 - -
3
4" —1
Vn € N, n = .
n a 3
L 4—4" .
On en déduit que pour tout n € N* : b, = —4a,_1 = ol Cette expression est
encore vraie pour by = 1, donc :
4" —1 4 — 4"
\V/ EN7 n — t bn:
n a 3 e 3
¢) On en déduit que pour tout n € N :
o1 3 -1 -1 1 4n 1 00
A" =a, A+ b, I35 = 3 -1 3 =1+ 5 01 0]
-1 -1 3 0 01
4" —1 4—4" 2x4"+1
O 3 = .D'ou :
r 3 X o+ 3 3 ou
2x 4"+ 1 4™ —1 4 —1
Vn e N, A" — _43—1 2><43+1 _4n =1
4" =1 4" —1 2><47§—|—1
3 3 3
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Exercice 4.
On rappelle qu’on dénombre les combinaisons possibles pour un coffre fort. La combinaison est
une suite de 3 a 8 entiers, tous compris entre 0 et 99, a rentrer dans 1’ordre.
On note k € [3, 8] la longueur de la combinaison.

1.

Si on sait que la combinaison est constituée de 4 nombres, le choix d’une combinaison est
un choix avec ordre et avec répétition possible de 4 nombres parmi les 100 entiers de 0 a 99.

Le nombre de possibilités est donc égal & |100* = 108 |, soit cent millions.

Si on ne connait pas k, on doit sommer le nombre de combinaisons possibles pour chaque
valeur de k, donc on obtient :

8 3 _ 9 18 _ 106
Z L00F — 100° — 100 _ 10 10
P 1 —100 99

Si on sait que k = 3 et que les 3 nombres sont tous différents, on doit effectuer un choix avec
ordre et sans répétition de 3 éléments parmi 100. On a donc ‘ 100 x 99 x 98‘ possibilités
dans le ces.

Si on sait que £ = 4 et que la suite de nombre est strictement croissante, on doit effectuer un
choix sans ordre et sans répétition (puisque le caracteére strictement croissant impose
I'ordre).

Ainsi, on obtient possibilités dans le cas.

4 24

(100) ~ 100 x 99 x 98 x 97

Elisa sait que Naél a choisi une combinaison a 5 nombres (k = 5), et elle connait aussi ses
nombres préférés.

a) On dénombre plutdt le complémentaire.
On sait qu’il y a 99° combinaisons qui ne contiennent pas le nombre 77, et 100° combi-
naisons au total.
Ainsi, le nombre de combinaisons possibles qui contiennent au moins 1 fois le nombre

77 vaut .

b) Il s’agit seulement de choisir 'ordre des 5 nombres, c’est a dire une permutation des 5
éléments.

On a donc | 5! = 120 | possibilités dans ce cas.

6. Python On représente une combinaison en Python par une liste d’entiers.

a) c)

def vérifie(L): def nombre_de_sept (Comb):
if len(L) < 3 or len(L) > nb7 = 0
8: for k in Comb:
return False if k % 10 == 7: # unité
for k in L: nb7 += 1
if k < 0 or k > 99: if k // 10 == 7: # dizaine
return False nb7 += 1
return True return nb7
b) Ou encore :
def strict_croissante(Comb): def nombre_de_sept_bis(Comb):
n = len(Comb) nb7 = 0
for i in range(n-1): for k in Comb:
if Comb[i] >= Combl[i for carac in str(k):
+1]: if carac == "7":
return False nb7 += 1
return True return nb7
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Exercice 5. Puissances de matrices par « trigonalisation »

3 -1 -5
Soit M =10 -2 0
0 -1 = 3—x -1 -5
1. a) Soit A\e ReOna M —-A3=| 0 —-2-)\ 0
0 -1 —2—-A
On utilise le Pivot de Gauss pour échelonner cette matrice.
3—A -1 -5
e En faisant L, <+ L3, on obtient 0 -1 —2—=A

0 —2-=A 0
3—A —1 -9
o Avec la transvection Lz <— L3 — (2 + \) Lo, on obtient 0 -1 —-2-A
0 0 (2412

Ainsi, lorsque A # 3 et A # —2, on a obtenu une matrice échelonnée de rang 3.

5 -1 =5
Lorsque A = —2, on a obtenu la matrice |0 —1 0 [, qui est échelonnée de rang 2.
0 0 O
0 -1 =5
Enfin, pour A = 3, on a obtenu la matrice |0 —1 -5/, qui a le méme rang que sa
0 0 25
0 0 0 -5 =5 25
transposée [ —1 —1 0 | et donc que | =1 —1 0 | en permutant les lignes.
-5 —5 25 0 0 0
On obtient donc un rang de 2 dans ce cas.

Finalement :
2 siA=-2oul=3

3 sinon

rg(M — M3) = {

b) e« Si A ¢ {3,—2}, la matrice (M — Al3) est inversible, donc 1'équation matricielle
admet une unique solution : X = 0.

or—y—95z = 0

e Si A = —2, on obtient le systéme linéaire (S_) 0 = 0, quiestde
—y = 0
rang 2 avec z comme inconnue secondaire.
r = z
Ainsi, on a (S_y) <= { 0 L’ensemble des solutions de (S_s) est
y —_=

z
{(2,0,2) | z € R}, donc les solutions de 1’équation sont les matrices |0 |, pour

z
z €R.
—y—5z = 0

e Si A =3, on obtient le systeme linéaire (S3) —b5y 0 , qui est équivalent

—y—95z = 0
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. —5z—y = 0 . .
a - 0 On a un systéme de rang 2 avec & comme inconnue secon-
— y —
daire. L’ensemble des solutions de (S3) est {(x,0,0) | z € R}, donc les solutions de
x
I’équation sont les matrices | 0 |, pour x € R.
0
1 1 1

2. Onnote P= 10 —1 0]. On applique le pivot de Gauss étendu a P et I3 simultanément.

1 1 1 1 00
o Ly L3—Lydonne |0 —1 O [et|[ O 1 0
0 0 -1 -1 0 1
On a une matrice échelonnée de rang 3, donc P est bien inversible.
111 10 O
e Lo+ —Loget L3+ —L3: |0 1 O0]let]|]O —1 O
001 1 0 -1
1 00 0 1
e 1+ Li—Ly—Lgdonne |0 1 0]et |0 —1 O
0 01 1 0 -1
0 1 1
Ainsi: [P'=1]0 -1 0
1 0 -1
-2 -1 3 -2 1
3.OnaMP=|0 2 0f,eedoncT=PMP=||0 -2 0
-2 -1 0 0 0 3

T est une matrice triangulaire supérieure.
4. Ona P'MP =T, donc P(P"'MP)P~' = PTP™! et ainsi M = PTP~L.
Comme T est une matrice triangulaire qui n’a pas de 0 sur la diagonale, elle est inversible.
Ainsi, M est le produit de 3 matrices inversibles : elle est elle-méme inversible.
5. On montre par récurrence sur n € N la proprété H, : "M"™ = PT"P~1”,
o Initialisation (n = 0) : M° = I3 et PT°P~! = PI3P~! = PP~ = P3. Ainsi, Hy est
bien vraie.
o Hérédité. Soit n € N tel que M™ = PT"P~!. Alors :
M = M"M = (PT"P~Y)(PTP™') = PT(P~'P)TP~' = PT"TP~! = PT""' P71,
Ainsi, H, 1 est encore vraie. D’ou I'hérédité.

« En conclusion, par principe de récurrence, on sait que | pour tout n € N : M™ = PT"P~!|

-2 0 0 010
6. Calcul des puissances de 7. Onpose D= 0 -2 0|letN=|0 0 0].
0o 0 3 0 00
0 -2 0
a) On a immédiatement que T'= D + N. De plus, DN = |0 0 0|, et on obtient le
méme résultat pour ND. D’ou: | DN = ND| 0 0 0

DS 5 1BioB — Maths-Info Page 7



b) par produit matriciel.

¢) Comme les matrices D et N commutent, on peut appliquer la formule du bindéme de
Newton. On a, pour tout n € N : 7" = (D + N)" = Y}, (Z)D”*ka.
Or pour tout k > 2, on a N¥ = N2N*=2 = (0 x N*=2 = 0. Ainsi, pour n > 1, il ne reste
que les termes pour kK =0 et kK = 1, et on obtient :
T = (5)D"ON® + (7)D"'N' = D"l +nD"'N = | D" + nND" | (puisque D et

N commutent). C’est bien le résultat voulu.

d) Soit n € N*. Comme D est une matrice diagonale, on a, pour tout k£ € N :

0 (=2~ 0 (=2)" n(=2)""*t 0
Ainsi, ND"t = |0 0 0f,etdonc|T"=1] 0 (=2 0
0 0 0 0 0 3"

Et cette forme est encore valide pour n = 0, puisque M = I;.
Enfin, il reste & calculer M™ = PT"P~!, pour n € N.
(=2)" (n—2)(=2)""" 3"
On a PT" = 0 —(=2)" 0
(=2)" (n—=2)(=2)"" 0
3 —n(=2)""t (=2)" - 3"
Donc M™ = PT"P~!1 =/ | 0 (—2)" 0
0 —n(=2)~! (—=2)"

7. On définit trois suites (z,,), (yn), (z,) € RN par récurrence, en posant : zy = yo = 20 = 1, et
pour tout n € N :

Tptl = S3Tp — Yp — D2n
Yn+1 = _2yn
Zn+1 = —Yn — 2Zn
T 1
a) On montre par récurrence sur n € N la propriété Q, : « |y, | = M" [ 1] ».
Zn 1
Zo 1
e Initialisation (n = 0). On sait que | yo | = [ 1], et que M° = I3.
20 1

Ainsi, 1’égalité est bien vraie au rang n = 0.
o Hérédité. Soit n € N tel que la propriété (), soit vraie.

1 1 T 3Tp — Yn — D2y Tptl
Alors : M™ | 1| =MxM"|1| =My, | = —2yy, = | Yn+1
1 1 Zn —Yn — an Zn+1

Donc la propriété (),, est encore vraie.
e Conclusion. Par principe de récurrence, on a bien montré que la propriété @),, est
‘Vraie pour tout n € N|.

b) On en déduit par produit matriciel que pour tout n € N :

Tn 3" —n(=2)" + (=2)" = 3" —(n+2)(=2)"?
o | =M"(1 1 1) = (—2) = (—2)"
2 —n(=2)"" + (=2)" —(n+2)(-2)"!

Ainsi : [Vn € N,z,, = —(n +2)(=2)"!|
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