
DS 5 – Maths & Info

Corrigé

Exercice 1.
1. Calcul d’intégrales :

∫ 2

0

1
(2x + 1)3 dx =

[1
2 ×

1
−2(2x + 1)−2

]2

0
= −1

4

[
1

(2x + 1)2

]2

0
= −1

4

( 1
52 − 1

)
=

24
4× 25 = 6

25 .

a)

On pose u = et, et donc du = etdt. u va alors de 1 à e, et l’intrégrale devient :∫ 1

0

1
1 + e−t

dt =
∫ 1

0

1
(1 + e−t)et

etdt =
∫ 1

0

1
et + 1etdt =

∫ e

1

1
u + 1du

D’où
∫ 1

0

1
1 + e−t

dt = [ln(u + 1)]e1 = ln(e + 1)− ln(2) = ln
(

e + 1
2

)
.

b)

2. a) Soient a, b ∈ R. On a a + b

1 + x2 = a(1 + x2) + b

1 + x2 = ax2 + a + b

1 + x2 .
Par identification, on cherche donc a, b ∈ R qui vérifient a = 1 et a + b = 0. Ainsi :
a = 1 et b = −1 conviennent.

D’où : ∀x ∈ R,
x2

1 + x2 = 1 + −1
1 + x2

b) On sait qu’une primitive sur R de la fonction x 7→ xArctan(x) est donnée par la fonction
x 7→

∫ x

0
tArctan(t)dt.

Calculons cette intégrale. Soit x ∈ R fixé.

On définit, pour tout t ∈ R, u(t) = Arctan(t) et v(t) = t2

2 . Alors les fonction u et v

sont de classe C1, et pour tout t ∈ R : u′(t) = 1
1 + t2 et v′(t) = t.

Par intégration par parties, on a alors :∫ x

0
tArctan(t)dt =

∫ x

0
u(t)v′(t)dt

= [u(t)v(t)]x0 −
∫ x

0
u′(t)v(t)dt

=
[

t2

2 Arctan(t)
]x

0
−
∫ x

0

t2

2(1 + t2)dt

= x2

2 Arctan(x)− 0− 1
2

∫ x

0

(
1− 1

t2 + 1

)
dt selon la question précédente

= x2

2 Arctan(x)− 1
2(x− 0) + 1

2 [Arctan(t)]x0

= x2

2 Arctan(x)− x

2 + Arctan(x)
2 − 0 puisque Arctan(0) = 0

Ainsi, une primitive sur R de la fonction x 7→ xArctan(x) est la fonction :

x 7→ x2Arctan(x)− x + Arctan(x)
2
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Exercice 2.
On considère la suite (un)n∈N ∈ RN définie par u0 = 8, et pour tout n ∈ N, un+1 = −2un + 5

3
1.1 def suite_u(n):

2 if n == 0:
3 return 8
4 else:
5 return (-2 * suite_u(n) + 5)/3

2. (un) est une suite arithmético-géométrique, puisque pour tout n ∈ N, on a un+1 = −2
3 un+ 5

3 .

On résout l’équation l = −2l + 5
3 d’inconnue l ∈ R. Pour tout l ∈ R, on a :

l = −2l + 5
3 ⇐⇒ 3l = −2l + 5 ⇐⇒ 5l = 5 ⇐⇒ l = 1 .

Posons alors la suite (vn)n∈N définie par : ∀n ∈ N, vn = un − l = un − 1.
Pour tout n ∈ N, on a : vn+1 = un+1 − l = −2un + 5

3 − −2l + 5
3 = −2

3 (un − l) = −2
3vn.

La suite (vn) est donc géométrique de raison q = −2
3 et de premier terme v0 = u0−1 = 7.

Ainsi, on sait que pour tout n ∈ N, vn = 7×
(
−2

3

)n

.

Enfin, on a donc : ∀n ∈ N, un = vn + 1 = 7×
(
−2

3

)n

+ 1 .

3. La suite (vn) est géométrique de raison q = −2
3 ∈]− 1, 1[, donc elle converge vers 0.

Ainsi, par somme, la suite (un) converge vers 1 .

4.1 n = 0
2 while abs(suite_u(n) - 1) >= 10**(-6):
3 n += 1
4 print(n)

5. Soit n ∈ N. On a :
n∑

k=0
uk =

n∑
k=0

(
7×

(
−2

3

)k

+ 1
)

= 7
n∑

k=0

(
−2

3

)k

+
n∑

k=0
1

On a la somme de termes d’une suite géométrique et une somme constante, donc on obtient :
n∑

k=0
uk = 7×

(
−2

3

)0
−
(
−2

3

)n+1

1−
(
−2

3

) + (n + 1).

Finalement :
n∑

k=0
uk = n + 1 + 7×

1−
(
−2

3

)n+1

5
3

= n + 1 + 21
5
(
1−

(
−2

5

))n+1
.
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Exercice 3.

On souhaite étudier l’inversibilité et les puissances de la matrice A =


3 −1 −1
−1 3 −1
−1 −1 3


1. On a A2 = A× A =


11 −5 −5
−5 11 −5
−5 −5 11

.

Or αA + βI3 =


3α + β −α −α

−α 3α + β −α

−α −α 3α + β


En identifiant les coefficients dans deux matrices, on cherche donc α, β ∈ R qui vérifient
−α = −5, donc α = 5, et 3α + β = 11, donc β = 11− 3α = 11− 15 = −4
Finalement : A2 = 5A− 4I3 .

2. On a −1
4 (A2 − 5A) = I3, donc A

(
−1

4(A− 5I3)
)

= I3.

Ainsi, la matrice A est bien inversible, avec pour inverse A−1 = −1
4 (A− 5I3) .

On a donc : A−1 = −1
4


−2 −1 −1
−1 −2 −1
−1 −1 −2

 = 1
4


2 1 1
1 2 1
1 1 2


3. Pour tout n ∈ N, notons Pn la propriété : ”il existe an, bn ∈ R tels que An = anA + bnI3”.

Montrons par récurrence que Pn est vraie pour tout n ∈ N.
• Initialisation (n = 0). A0 = I3 = 0A + 1I3, donc a0 = 0 et b0 = 1 conviennent. La

propriété P0 est bien vraie.
• Hérédité. Soit n ∈ N tel que la propriété Pn est vraie. On dispose donc de an, bn ∈ R

tels que An = anA + bnI3. Alors :
An+1 = An × A = (anA + bnI3)A = anA2 + bnA
Comme A2 = 5A− 4I3, on a : An+1 = an(5A− 4I3) + bnA = (5an + bn)A− 4anI3.
Ainsi, les réels an+1 = 5an + bn et bn+1 = −4an conviennent, et Pn+1 est bien vraie.

• Par principe de récurrence, on a bien l’existence de réels an, bn qui conviennent pour
tout n ∈ N.

4. On note (an) et (bn) les suites obtenues à la question précédente, qui sont donc définies par
récurrence de la manière suivante : a0 = 0, b0 = 1, et pour tout n ∈ N : an+1 = 5an + bn

bn+1 = −4an

a) Pour tout n ∈ N, on a : an+2 = 5an+1 + bn+1 = 5an+1 − 4an .
On a bien une relation de récurrence linéaire d’ordre 2 pour la suite (an).

b) On pose l’équation caractéristique (Ec) : x2 − 5x + 4 = 0.
Son discriminant est ∆ = (−5)2 − 4× 4 = 25− 16 = 9 > 0.
L’équation caractéristique admet donc deux solutions réelles distinctes, données par
q1 = 5− 3

2 = 1 et q2 = 5 + 3
2 = 4.

Ainsi, il existe, λ, µ ∈ R tels que pour tout n ∈ N : an = λ1n + µ4n =λ + µ4n.
Or on sait que a0 = 0 et que a1 = 5a0 + b0 = 1.
Donc λ + µ = a0 = 0 et λ + 4µ = a1 = 1.
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Or :

 λ + µ = 0
λ + 4µ = 1

⇐⇒

 λ + µ = 0
3µ = 1

⇐⇒


µ = 1

3
λ = −1

3
D’où finalement :

∀n ∈ N, an = 4n − 1
3 .

On en déduit que pour tout n ∈ N∗ : bn = −4an−1 = 4− 4n

3 . Cette expression est

encore vraie pour b0 = 1, donc :

∀n ∈ N, an = 4n − 1
3 et bn = 4− 4n

3
c) On en déduit que pour tout n ∈ N :

An = anA + bnI3 = 4n − 1
3


3 −1 −1
−1 3 −1
−1 −1 3

+ 4− 4n

3


1 0 0
0 1 0
0 0 1

.

Or 4n − 1
3 × 3 + 4− 4n

3 = 2× 4n + 1
3 . D’où :

∀n ∈ N, An =



2× 4n + 1
3 −4n − 1

3 −4n − 1
3

−4n − 1
3

2× 4n + 1
3 −4n − 1

3
−4n − 1

3 −4n − 1
3

2× 4n + 1
3


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Exercice 4.
On rappelle qu’on dénombre les combinaisons possibles pour un coffre fort. La combinaison est
une suite de 3 à 8 entiers, tous compris entre 0 et 99, à rentrer dans l’ordre.
On note k ∈ J3, 8K la longueur de la combinaison.

1. Si on sait que la combinaison est constituée de 4 nombres, le choix d’une combinaison est
un choix avec ordre et avec répétition possible de 4 nombres parmi les 100 entiers de 0 à 99.
Le nombre de possibilités est donc égal à 1004 = 108 , soit cent millions.

2. Si on ne connaît pas k, on doit sommer le nombre de combinaisons possibles pour chaque
valeur de k, donc on obtient :

8∑
k=3

100k = 1003 − 1009

1− 100 = 1018 − 106

99

3. Si on sait que k = 3 et que les 3 nombres sont tous différents, on doit effectuer un choix avec
ordre et sans répétition de 3 éléments parmi 100. On a donc 100× 99× 98 possibilités
dans le ces.

4. Si on sait que k = 4 et que la suite de nombre est strictement croissante, on doit effectuer un
choix sans ordre et sans répétition (puisque le caractère strictement croissant impose
l’ordre).

Ainsi, on obtient
(

100
4

)
= 100× 99× 98× 97

24 possibilités dans le cas.

5. Élisa sait que Naël a choisi une combinaison à 5 nombres (k = 5), et elle connaît aussi ses
nombres préférés.
a) On dénombre plutôt le complémentaire.

On sait qu’il y a 995 combinaisons qui ne contiennent pas le nombre 77, et 1005 combi-
naisons au total.
Ainsi, le nombre de combinaisons possibles qui contiennent au moins 1 fois le nombre
77 vaut 1005 − 995 .

b) Il s’agit seulement de choisir l’ordre des 5 nombres, c’est à dire une permutation des 5
éléments.
On a donc 5! = 120 possibilités dans ce cas.

6. Python On représente une combinaison en Python par une liste d’entiers.
a)

1 def vérifie(L):
2 if len(L) < 3 or len(L) >

8:
3 return False
4 for k in L:
5 if k < 0 or k > 99:
6 return False
7 return True

b)
1 def strict_croissante(Comb):
2 n = len(Comb)
3 for i in range(n-1):
4 if Comb[i] >= Comb[i

+1]:
5 return False
6 return True

c)
1 def nombre_de_sept(Comb):
2 nb7 = 0
3 for k in Comb:
4 if k % 10 == 7: # unité
5 nb7 += 1
6 if k // 10 == 7: # dizaine
7 nb7 += 1
8 return nb7

Ou encore :
1 def nombre_de_sept_bis(Comb):
2 nb7 = 0
3 for k in Comb:
4 for carac in str(k):
5 if carac == "7":
6 nb7 += 1
7 return nb7
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Exercice 5. Puissances de matrices par « trigonalisation »

Soit M =


3 −1 −5
0 −2 0
0 −1 −2


1. a) Soit λ ∈ R. On a M − λI3 =


3− λ −1 −5

0 −2− λ 0
0 −1 −2− λ

.

On utilise le Pivot de Gauss pour échelonner cette matrice.

• En faisant L2 ↔ L3, on obtient


3− λ −1 −5

0 −1 −2− λ

0 −2− λ 0



• Avec la transvection L3 ← L3 − (2 + λ)L2, on obtient


3− λ −1 −5

0 −1 −2− λ

0 0 (2 + λ)2


Ainsi, lorsque λ 6= 3 et λ 6= −2, on a obtenu une matrice échelonnée de rang 3.

Lorsque λ = −2, on a obtenu la matrice


5 −1 −5
0 −1 0
0 0 0

, qui est échelonnée de rang 2.

Enfin, pour λ = 3, on a obtenu la matrice


0 −1 −5
0 −1 −5
0 0 25

, qui a le même rang que sa

transposée


0 0 0
−1 −1 0
−5 −5 25

 et donc que


−5 −5 25
−1 −1 0
0 0 0

 en permutant les lignes.

On obtient donc un rang de 2 dans ce cas.
Finalement :

rg(M − λI3) =

 2 si λ = −2 ou λ = 3
3 sinon

b) • Si λ /∈ {3,−2}, la matrice (M − λI3) est inversible, donc l’équation matricielle
admet une unique solution : X = 0.

• Si λ = −2, on obtient le système linéaire (S−2)


5x− y − 5z = 0

0 = 0
−y = 0

, qui est de

rang 2 avec z comme inconnue secondaire.

Ainsi, on a (S−2) ⇐⇒

 x = z

y = 0
. L’ensemble des solutions de (S−2) est

{(z, 0, z) | z ∈ R}, donc les solutions de l’équation sont les matrices


z

0
z

, pour

z ∈ R.

• Si λ = 3, on obtient le système linéaire (S3)


−y − 5z = 0
−5y = 0

−y − 5z = 0
, qui est équivalent
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à

 −5z − y = 0
−5y = 0

. On a un système de rang 2 avec x comme inconnue secon-

daire. L’ensemble des solutions de (S3) est {(x, 0, 0) | z ∈ R}, donc les solutions de

l’équation sont les matrices


x

0
0

, pour x ∈ R.

2. On note P =


1 1 1
0 −1 0
1 1 0

. On applique le pivot de Gauss étendu à P et I3 simultanément.

• L3 ← L3 − L1 donne


1 1 1
0 −1 0
0 0 −1

 et


1 0 0
0 1 0
−1 0 1


On a une matrice échelonnée de rang 3, donc P est bien inversible.

• L2 ← −L2 et L3 ← −L3 :


1 1 1
0 1 0
0 0 1

 et


1 0 0
0 −1 0
1 0 −1



• L1 ← L1 − L2 − L3 donne


1 0 0
0 1 0
0 0 1

 et


0 1 1
0 −1 0
1 0 −1



Ainsi : P −1 =


0 1 1
0 −1 0
1 0 −1



3. On a MP =


−2 −1 3
0 2 0
−2 −1 0

, et donc T = P −1MP =


−2 1 0
0 −2 0
0 0 3

 .

T est une matrice triangulaire supérieure.
4. On a P −1MP = T , donc P (P −1MP )P −1 = PTP −1, et ainsi M = PTP −1.

Comme T est une matrice triangulaire qui n’a pas de 0 sur la diagonale, elle est inversible.
Ainsi, M est le produit de 3 matrices inversibles : elle est elle-même inversible.

5. On montre par récurrence sur n ∈ N la proprété Hn : ”Mn = PT nP −1”.
• Initialisation (n = 0) : M0 = I3 et PT 0P −1 = PI3P

−1 = PP −1 = P3. Ainsi, H0 est
bien vraie.

• Hérédité. Soit n ∈ N tel que Mn = PT nP −1. Alors :
Mn+1 = MnM = (PT nP −1)(PTP −1) = PT n(P −1P )TP −1 = PT nTP −1 = PT n+1P −1.
Ainsi, Hn+1 est encore vraie. D’où l’hérédité.

• En conclusion, par principe de récurrence, on sait que pour tout n ∈ N : Mn = PT nP −1 .

6. Calcul des puissances de T . On pose D =


−2 0 0
0 −2 0
0 0 3

 et N =


0 1 0
0 0 0
0 0 0

.

a) On a immédiatement que T = D + N . De plus, DN =


0 −2 0
0 0 0
0 0 0

, et on obtient le

même résultat pour ND. D’où : DN = ND .
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b) N2 = 03 par produit matriciel.
c) Comme les matrices D et N commutent, on peut appliquer la formule du binôme de

Newton. On a, pour tout n ∈ N : T n = (D + N)n = ∑n
k=0

(
n
k

)
Dn−kNk.

Or pour tout k ≥ 2, on a Nk = N2Nk−2 = 0×Nk−2 = 0. Ainsi, pour n ≥ 1, il ne reste
que les termes pour k = 0 et k = 1, et on obtient :
T n =

(
n
0

)
Dn−0N0 +

(
n
1

)
Dn−1N1 = DnI3 + nDn−1N = Dn + nNDn−1 (puisque D et

N commutent). C’est bien le résultat voulu.
d) Soit n ∈ N∗. Comme D est une matrice diagonale, on a, pour tout k ∈ N :

Dk = diag((−2)k, (−2)k, 3k).

Ainsi, NDn−1 =


0 (−2)n−1 0
0 0 0
0 0 0

, et donc T n =


(−2)n n(−2)n−1 0

0 (−2)n 0
0 0 3n

 .

Et cette forme est encore valide pour n = 0, puisque M0 = I3.
Enfin, il reste à calculer Mn = PT nP −1, pour n ∈ N.

On a PT n =


(−2)n (n− 2)(−2)n−1 3n

0 −(−2)n 0
(−2)n (n− 2)(−2)n−1 0

.

Donc Mn = PT nP −1 =


3n −n(−2)n−1 (−2)n − 3n

0 (−2)n 0
0 −n(−2)n−1 (−2)n

 .

7. On définit trois suites (xn), (yn), (zn) ∈ RN par récurrence, en posant : x0 = y0 = z0 = 1, et
pour tout n ∈ N : 

xn+1 = 3xn − yn − 5zn

yn+1 = −2yn

zn+1 = −yn − 2zn

a) On montre par récurrence sur n ∈ N la propriété Qn : «


xn

yn

zn

 = Mn


1
1
1

 ».

• Initialisation (n = 0). On sait que


x0

y0

z0

 =


1
1
1

, et que M0 = I3.

Ainsi, l’égalité est bien vraie au rang n = 0.
• Hérédité. Soit n ∈ N tel que la propriété Qn soit vraie.

Alors : Mn+1


1
1
1

 = M ×Mn


1
1
1

 = M


xn

yn

zn

 =


3xn − yn − 5zn

−2yn

−yn − 2zn

 =


xn+1

yn+1

zn+1

.

Donc la propriété Qn est encore vraie.
• Conclusion. Par principe de récurrence, on a bien montré que la propriété Qn est

vraie pour tout n ∈ N .
b) On en déduit par produit matriciel que pour tout n ∈ N :

xn

yn

zn

 = Mn
(
1 1 1

)
=


3n − n(−2)n−1 + (−2)n − 3n

(−2)n

−n(−2)n−1 + (−2)n

 =


−(n + 2)(−2)n−1

(−2)n

−(n + 2)(−2)n−1


Ainsi : ∀n ∈ N, xn = −(n + 2)(−2)n−1 .
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