
TP 10 Python – Récursivité

1. La récursivité – cours
Il existe différentes manières de programmer un même algorithme. La façon de programmer basée sur

les boucles (while ou for) étudiée jusqu’à maintenant est appelée programmation itérative.
On introduit ici une nouvelle manière de programmer : la programmation récursive.
Cette façon permet d’écrire un certain nombre de programmes plus simplement et de façon plus concise.
Cependant, elle a plusieurs inconvénients à ne pas négliger : elle nécessite de faire très attention à ne pas
avoir de ”boucle infinie”, et à ne pas faire des calculs redondants qui pourraient faire exploser le temps
d’exécution. De plus, le langage Python est mal adapté pour ce type de programmation.

Le concept de fonction récursive est assez proche de la notion mathématique de récurrence.

Exemple
On peut coder la fonction factorielle de la manière suivante :

1 def factorielle(n):
2 if n == 0 :
3 return 1
4 else :
5 return factorielle(n-1) * n

On a toujours un ou plusieurs ”cas de base”, ici n = 0. Pour les autres valeurs de l’argument, on utilise
la fonction elle-même, appliquée à un argument ”plus petit”. L’idée est de se ramener au cas de base,
étape par étape.
Par exemple, ici, pour calculer factorielle(5), Python doit d’abord calculer factorielle(4). Mais il
doit alors calculer factorielle(3), etc. il ”remonte” alors la pile d’appels, à partir de la valeur connue
factorielle(0), jusqu’à la valeur demandée factorielle(5).
Concrètement, on a utilisé la définition par récurrence suivante : 0! = 1 et pour tout n ∈ N∗, n! =
n × (n − 1)!.

Définition
On dit qu’une fonction (informatique) est récursive si, dans certains cas, elle s’appelle elle-même,
avec de nouveaux paramètres (souvent plus petits). On appelle cela un appel récursif.

Remarque. � Une fonction récursive doit toujours comprendre au moins un cas terminal qui ne demande
pas d’appel récursif.
Si elle est bien programmée, la fonction récursive doit toujours finir par aboutir à un tel cas, faute de quoi
votre fonction part en récursivité infinie !

Exemple

1 def somme_liste(L):
2 if L == [] : # Condition d'arrêt
3 return 0
4 else :
5 return L[0] + somme_liste(L[1:]) # Appel récursif

Ici, l’appel récursif s’effectue avec une liste qui contient un élément de moins (on retire le premier
élément).
Les appels successifs aboutissent donc nécessairement une liste vide, dont la somme vaut 0, avant de
”remonter” jusqu’à la liste d’origine.

Informatique – TP 10 1BioB Page 1

2. Exercices de récursivité
� Dans tout ce TP, on écrira exclusivement des fonctions récursives, sans boucles for ni boucles while !

Exercice 1. Pour tout n ∈ N, on pose Sn =
n∑

k=0
k5.

1. Que vaut S0 ?
2. Exprimer Sn en fonction de Sn−1 pour tout n ∈ N∗.
3. En déduire une fonction récursive (sans boucle for !) qui prend en argument un entier naturel n et qui

renvoie la valeur de la somme Sn.

Exercice 2. Écrire une fonction produit_liste(L) qui prend en argument une liste L et qui renvoie le
produit de tous ses éléments.

Exercice 3. On considère la suite définie par u0 = 1 et, pour tout n ∈ N, un+1 = 1
1 + u2

n

.

Écrire une fonction qui prend en argument un entier naturel n et qui renvoie la valeur de un.

Exercice 4. On rappelle la suite de Fibonacci : F0 = 0, F1 = 1, et ∀n ∈ N, Fn+2 = Fn+1 + Fn.
1. Écrire une fonction (récursive) Fibo_rec(n) qui prend en argument un entier naturel n et qui renvoie

la valeur de Fn. Indication : Combien faut-il de ”cas de base” ici ?
2. Écrire une fonction itérative Fibo_iter(n) qui fait de même avec une boucle for (objectif : l’écrire

en moins d’une minute !)
3. Comparez le temps d’exécution de Fibo_rec(40) et de Fibo_iter(40) (faites preuve de patience)
4. Proposez une explication.
5. Pour résoudre ce problème, on garde en mémoire les valeurs déjà calculées, en calculant plutôt la liste

de tous les termes de F0 à Fn. Écrire la version récursive de cette fonction, liste_Fibo_rec(n). Que
pensez-vous de son temps d’exécution pour n = 40 ?

Exercice 5. On définit la suite de Catalan (Cn)n∈N par :

C0 = 1, et pour tout n ∈ N, Cn+1 =
n∑

k=0
CkCn−k

1. Écrire une fonction Catalan(n), qui prend en paramètre un entier naturel n, et qui renvoie la valeur
de Cn. On s’autorisera une boucle for pour le calcul de la somme !

2. Tester la fonction avec n = 10 (C10 = 16796) et n = 16. Que pensez vous de son temps d’exécution ?
3. Sur le modèle de l’exercice précédent, écrire une fonction améliorée (mais toujours récursive), qui fait

le travail plus rapidement.

Exercice 6. On souhaite écrire une fonction fusion(L1, L2) qui prend en paramètre deux listes de nombres
supposées triées dans l’ordre croissant, et qui renvoie une liste qui contient tous les éléments de L1 et
de L2, encore triés dans l’ordre croissant.
Par exemple, fusion([3,5,6,9], [5,7,11]) doit renvoyer [3, 5, 5, 6, 7, 9, 11]

1. Que renvoie la fonction fusion si l’une des deux listes est vide ?
2. On suppose que les deux listes sont non vides et que le premier élément de L1 est plus petit que celui

de L2. Alors la fonction doit renvoyer [L1[0]]+fusion(....) (à compléter).
3. À l’aide des éléments ci-dessus, écrire la fonction fusion.
4. (**) En déduire une fonction tri_fusion(L) qui prend en paramètre une liste de nombres L, et qui

renvoie la liste qui contient les mêmes éléments triés dans l’ordre croissant.
L’idée est de ”couper en 2” la liste L, d’appliquer la fonction tri_fusion aux deux petites listes, puis
de les fusionner.
NB : C’est un algorithme de tri optimal en terme de ”complexité”, c’est-à-dire de nombre de d’opéra-
tions effectuées !

Informatique – TP 10 1BioB Page 2

Complément (à faire après les fractales !)

Exercice 7.
Écrire une fonction motsAB(n) qui renvoie une liste contenant tous les mots de longueur n qu’on peut écrire
en utilisant seulement les lettres ”a” et ”b”.
Écrire une fonction motsABsansAA(n) qui renvoie une liste contenant tous les mots de longueur n qu’on
peut écrire en utilisant seulement les lettres ”a” et ”b”, sans jamais avoir deux ”a” consécutifs.
Écrire une fonction Parties(n) qui renvoie une liste contenant toutes les parties de J1, nK (sans répétition).
On représentera les parties de J1, nK par la liste des éléments qu’elle contient.

Exercice 8. On souhaite comparer deux mots pour savoir s’ils sont ou non dans l’ordre alphabétique.
On a écrit pour cela au TP8 une fonction numéro(lettre) qui associe à chaque lettre sa position dans
l’alphabet (a↔1, b↔2, etc.), afin de pourvoir facilement comparer deux lettres :
alphabet = "abcdefghijklmnopqrstuvwxyz"
def numéro(c):

for i in range(26):
if c == alphabet[i]:

return i+1

Pour la fonction ordre_alpha(mot1, mot2), on peut utiliser l’idée suivante :
• Si la première lettre du mot1 est différente de celle du mot2, on conclut facilement.
• Si les premières lettres sont les mêmes, il faut comparer les mots auxquels on a enlevé la première

lettre (à l’aide du slicing mot[1:]).
• Attention ! On risque d’arriver à un mot vide pendant ce procédé… Le cas où l’un des mots est vide

doit donc apparaître dans les ”cas de base” de la fonction.
À vous de jouer !

3. Fractales
Une figure fractale est un objet mathématique qui présente une structure similaire à toutes les échelles.

En zoomant sur une partie de la figure, il est possible de retrouver toute la figure ; on dit alors qu’elle est
« autosimilaire ». La définition de ces structures se fait donc naturellement de manière récursive, mais infinie.

On en donne dans la suite des exemples classiques, qu’on dessinera du mieux possible en Python à l’aide
de fonctions récursives et du module matplotlib.pyplot.

Dans ce TP, seules les commandes suivantes seront utiles : plt.plot(X, Y, "k"), plt.axis("equal") et
plt.show().

On utilisera aussi la fonction plt.fill(X, Y, "k"), qui permet de colorier la zone délimitée par les points
associés aux listes X et Y .

Informatique – TP 10 1BioB Page 3

3.A) Triangle de Sierpinski

Le triangle de Sierpinski est construit de la manière suivante :

On remarquera que l’étape n + 1 est toujours constituée de 3 petits triangles de l’étape n disposés en
pyramide.
C’est de cette manière qu’on construit la fonction récursive triangle_sierp.
Cette dernière doit donc prendre en argument non seulement le numéro de l’étape, mais aussi un ”point de
départ” sous la forme d’un couple de coordonnée (x, y) et une longueur pour le côté du triangle.

À vous d’écrire cette fonction ! Pour vous aider, vous pouvez répondre aux questions suivantes :
1. Quel est le ”cas de base” ? Comment le réaliser ?
2. Si je veux construire le triangle de l’étape n, à partir du point de départ (x, y) :

(a) Quelle doit être la longueur des petits triangles de l’étape n − 1 ?
(b) Quels sont les coordonnées de leurs point de départ respectifs ?

3.B) Flocon de Koch
La courbe de Koch est construite de la manière ci-contre.
L’étape 0 est seulement un segment, et pour construire la courbe à l’étape
n + 1, on met bout à bout 4 courbes de l’étape n… mais il faut choisir
soigneusement le point de départ et le point d’arrivée !

Pour ce faire, on aura besoin des fonctions suivantes :
1. Écrire une fonction trace_segment(M, N) qui prend en argument

deux point (donné chacun comme couple de coordonnées), et qui trace
le segment qui les relie.

2. Écrire une fonction divise_en_3(A, D) qui prend en argument deux
points et qui renvoie les coordonnées des deux points B et C tels que−−→
AB = −−→

BC = −−→
CD (on divise le segment [AD] en trois parts égales).

3. On admet le fonctionnement de la fonction ci-dessous, qui prend en
argument deux points A et B, et qui renvoie le point C tel que ABC
est un triangle équilatéral parcouru dans le sens direct.
def sommet_manquant_equilateral(A,B):

xA, yA = A
xB, yB = B
xC = (xB + xA - sqrt(3)*(yB - yA)) / 2
yC = (yB + yA + sqrt(3)*(xB + xA)) / 2
return xC, yC

À l’aide des fonctions ci-dessus, écrire une fonction récursive courbe_koch(départ, arrivée, n) qui
trace la courbe de Koch à l’étape n partant du point départ et arrivant au point arrivée.

En déduire une fonction flocon_de_koch(n) qui trace le flocon de Koch à
l’étape n.

Informatique – TP 10 1BioB Page 4

	La récursivité – cours
	Exercices de récursivité
	Fractales

