Interro 1

1. Soit n un entier, x un réel, et f une fonction de \mathbb{R} dans \mathbb{R} . Donner la négation de chacune des assertions suivantes:

a)
$$(n > 100)$$
 ou $(n \text{ n'est pas divisible par } 3)$

b)
$$-3 < x \le 7$$

c)
$$x \in \mathbb{Q} \Longrightarrow |x| = 1$$

d)
$$\forall a \in \mathbb{R}, f(a) > f(3)$$

e)
$$\exists t \in \mathbb{R}, \forall a \in \mathbb{R}, \exists n \in \mathbb{Z}, f(a+n) = t$$

Solution:

a)
$$n \le 100$$
 et $(n \text{ est divisible par } 3)$

b)
$$-3 \ge x$$
 ou $x > 7$

c)
$$x \in \mathbb{Q}$$
 et $|x| \neq 1$

d)
$$\exists a \in \mathbb{R}, f(a) < f(3)$$

e)
$$\forall t \in \mathbb{R}, \exists a \in \mathbb{R}, \forall n \in \mathbb{Z}, f(a+n) \neq t$$

2. Soit $f: \mathbb{R} \to \mathbb{R}$. Écrire à l'aide des quantificateurs les assertions suivantes :

a)
$$f$$
 atteint son maximum en $x = 1$

b)
$$f$$
 n'est pas paire

$$d)$$
 f n'est pas constante

Solution:

a)
$$\forall x \in \mathbb{R}, f(x) \leq f(1)$$

b)
$$\exists x \in \mathbb{R}, f(-x) \neq f(x)$$

c)
$$\forall x \in \mathbb{R}, f(x) \in \mathbb{Q}$$

d)
$$\exists x, y \in \mathbb{R}, f(x) \neq f(y)$$

Autre possibilité pour la d) : $\forall c \in \mathbb{R}, \exists x \in \mathbb{R}, f(x) \neq c$.

3. Écrire le plus simplement possible chacun des ensembles suivants. On ne demande pas de justification.

a)
$$[3;7] \cup] - \infty;3]$$

b)
$$[3:7] \cap] - \infty:3$$

b)
$$[3;7] \cap]-\infty;3]$$
 c) $\mathbb{Z} \cap \mathbb{R}_{+}^{*} \cap [-5;5[$

d)
$$\bigcup_{n=1}^{100}]-n;n[$$

e)
$$\{x \in \mathbb{R} \mid x^2 - 4x + 3 = 0\}$$

Solution:

a)
$$]-\infty;7]$$

d)
$$] - 100; 100[$$

e)
$$\{1;3\}$$

Pour la e), on trouve les racines du trinôme à l'aide du discriminant :

 $\Delta = (-4)^2 - 4 \times 1 \times 3 = 16 - 12 = 4 = 2^2$ donc on a deux racines données par $\frac{4 \pm 2}{2} = 2 \pm 1 : 1$ et 3.