Interro 2

- 1. **Python**: Écrire une fonction Python fonction(a,b) qui prend en argument deux entiers a et b, et qui **renvoie**:
 - -1 si a = 0;
 - $a^b \sin a > 0$:
 - a+b sinon.

Solution:

```
1 def fonction(a,b):
2    if a == 0:
3        return -1
4    elif a > 0:
5        return a**b
6    else:
7    return a+b
```

2. On définit une suite $(u_n)_{n\in\mathbb{N}^*}$ à valeurs réelles par $u_1=1$ et pour tout $n\in\mathbb{N}^*$: $u_{n+1}=u_n+2n+1$. Montrer par récurrence que pour tout $n\in\mathbb{N}^*$, on a $u_n=n^2$.

Solution : Pour tout $n \in \mathbb{N}^*$, on pose P_n la propriété : $u_n = n^2$. Montrons par récurrence que P_n est vraie pour tout $n \in \mathbb{N}^*$.

- Initialisation (n = 1): P_1 est la propriété : $u_1 = 1^2 = 1$. Or $u_1 = 1$ selon l'énoncé, donc P_1 est bien vraie.
- Hérédité: Fixons n∈ N* telle que P_n est vraie, c'est-à-dire u_n = n².
 Montrons que P_{n+1} est vraie, c'est-à-dire que u_{n+1} = (n+1)².
 Or selon l'énoncé, u_{n+1} = u_n + 2n + 1 = n² + 2n + 1 d'après l'hypothèse de récurrence.
 D'où: u_{n+1} = (n+1)². Ainsi, P_{n+1} est bien vraie, d'où l'hérédité.
- En conclusion, on a bien montré que pour tout $n \in \mathbb{N}^*$: $u_n = n^2$.
- 3. Résoudre sur $\mathbb R$ les deux équations et inéquations suivantes :

$$(E_1): 4x^2 - x - 1 = x^2 - 3x$$

$$(E_2): \frac{x}{x-1} \ge \frac{x+3}{x+5}$$

Solution:

$$4x^{2} - x - 1 = x^{2} - 3x \iff 3x^{2} + 2x - 1 = 0$$

$$\Delta = 2^{2} - 4 \times 3 \times (-1) = 4 + 12 = 16 > 0,$$
donc le trinôme a deux racines, données par
$$\frac{-2 \pm 4}{6} : x_{1} = \frac{1}{3} \text{ et } x_{2} = -1.$$
On a donc $S = \{-1, \frac{1}{3}\}.$

$$\frac{x}{x-1} \ge \frac{x+3}{x+5} \iff \frac{x}{x-1} - \frac{x+3}{x+5} \ge 0$$

$$\iff \frac{x(x+5)}{(x-1)(x+5)} - \frac{(x-1)(x+3)}{(x-1)(x+5)} \ge 0$$

$$\iff \frac{x^2 + 5x - (x^2 + 2x - 3)}{(x-1)(x+5)} \ge 0$$

$$\iff \frac{3x+3}{(x-1)(x+5)} \ge 0$$

Il reste à dresser le tableau de signe de $f(x) = \frac{3x+3}{(x-1)(x+5)}$ pour conclure.

	(=	/(~ '	٠,						
x	$-\infty$		-5		-1		1		$+\infty$
3x + 3		_		_	0	+		+	
x-1		_		_		_	0	+	
x+5		_	0	+		+		+	
f(x)		_		+	0	_		+	

D'où finalement : $S =]-5;-1] \cup]1,+\infty[$.