Interro 3

- 1. Soit E une partie de \mathbb{R} .
 - a) Donner la définition d'un minorant de E, du maximum de E et de la borne supérieure.
 - b) Quel est le lien entre le maximum et la borne supérieure?

Solution:

- a) Un minorant de E est un élément $a \in \mathbb{R}$ qui vérifie : $\forall x \in E, a \leq x$. Le maximum de E (s'il existe) est un élément $a \in \mathbb{R}$ tel que : $a \in E$ et $\forall x \in E, a \geq x$. La borne supérieure de E (si elle existe) est le plus petit des majorants de E : $\sup(E) = \min \{a \in \mathbb{R} \mid \forall x \in E, a \geq x\}.$
- b) Lorsque E admet un maximum a, alors il admet aussi une borne supérieure, et on a $a = \max(E) = \sup(E)$. La réciproque est fausse!
- 2. Résoudre les équations suivantes d'inconnue $x \in \mathbb{R}$.

a)
$$\ln(x+5) = 2\ln(x) + \ln(4)$$

b)
$$e^{2x} + e^x - 6 = 0$$

Solution : a) Cette équation est définie pour x>0 et x+5>0 : son domaine d'existence est $]0;+\infty[\cap]-5;+\infty[=\mathbb{R}_+^*.$ Pour tout x>0, on a :

$$\ln(x+5) = 2\ln(x) + \ln(4) \iff \ln(x+5) = \ln(4 \times x^2)$$
$$\iff x+5 = 4x^2$$
$$\iff 4x^2 - x - 5 = 0$$

Ce trinôme a pour discriminant $\Delta = 1^2 + 4 \times 4 \times 5 = 1 + 80 = 81 = 9^2 > 0$, donc il a deux racines, données par $\frac{1 \pm 9}{8}$, à savoir -1 et $\frac{10}{8} = \frac{5}{4}$.

- -1 n'est pas dans le domaine d'existence de l'équation, donc l'unique solution est $\frac{5}{4}$: $S = \left\{\frac{5}{4}\right\}$.
- b) Cette équation est définie sur \mathbb{R} . Pour tout $x \in \mathbb{R}$, on peut poser $y = e^x$, et on a alors :

$$e^{2x} + e^x - 6 = 0 \iff y^2 + y - 6 = 0$$

Ce trinôme a pour discriminant $\Delta=1^2+4\times 6=25=5^2>0$, donc il a deux racines, données par $\frac{-1\pm 5}{2}$, à savoir 2 et -3.

On a donc $e^{2x} + e^x - 6 = 0 \iff (y = -3 \text{ ou } y = 2) \iff (e^x = -3 \text{ ou } e^x = 2.$ L'équation $e^x = -3$ n'a pas de solution, et $e^x = 2$ a une unique solution, $\ln(2)$. Ainsi : $S = \{\ln(2)\}$.