Interro 5

1. Soient E, F deux ensembles, et $f: E \to F$ une application. Donner avec des quantificateurs, puis avec une phrase, la définition de l'assertion : « f est injective ».

Solution: f est injective lorsque: $\forall x, y \in E, (x \neq y \Longrightarrow f(x) \neq f(y))$

ou encore : $\forall x, y \in E, (f(x) = f(y) \Longrightarrow x = y).$

Avec une phrase : f est injective lorsque deux éléments distincts de l'ensemble de départ ont toujours des images distinctes par f.

Ou encore : f est injective lorsque tout élément de l'ensemble d'arrivée a **au plus** un antécédent par f.

2. Représenter sur un schéma une fonction surjective mais non injective.

Solution : Beaucoup de possibilités! Voir le cours ou un camarade.

3. Donner un exemple d'application de \mathbb{R} dans \mathbb{R} ni injective, ni surjective.

Solution : Par exemple, la fonction $f: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ & & \text{n'est pas injective car } f(-1) = f(1), \text{ et n'est} \\ x & \mapsto & x^2 \end{array} \right.$

pas surjective car -1 n'a pas d'antécédent par

4. Soit $f: \begin{cases} \mathbb{R} \to \mathbb{R} \\ x \mapsto \frac{1-2x}{2} \end{cases}$ Justifier brièvement que f est bijective, et déterminer sa réciproque.

Solution: f est injective car c'est une fonction affine non constante, donc elle est strictement monotone sur \mathbb{R} (strictement décroissante ici).

Pour tous $x, y \in \mathbb{R}$, on a : $f(x) = y \iff \frac{1-2x}{3} = y \iff 1-2x = 3y \iff x = \frac{3y-1}{-2} = \frac{1-3y}{2}$. Ainsi, on a "inversé la formule" : pour tout $y \in \mathbb{R}$, y a exactement un antécédent par f, donné par

 $x = \frac{1 - 3y}{2}$

L'application f est donc bien bijective, et sa réciproque est donnée par : f^{-1} : $\begin{cases} \mathbb{R} & \to \mathbb{R} \\ y & \mapsto \frac{1-3y}{2} \end{cases}$

5. Donner sans justifier : $\cos(\mathbb{R})$, $\exp(]-\infty,1]$) et h([-1,2]) où $h:x\in\mathbb{R}\mapsto x^2\in\mathbb{R}$.

Solution : On a : $\cos(\mathbb{R}) = [-1, 1]$, $\exp(] - \infty, 1]) =]0, e]$, et h([-1, 2]) = [0, 4].