Interro 6

1. Déterminer le domaine de dérivabilité et l'expression de la dérivée de $f(x) = \sqrt{\ln(x^2 + 1)}$

Solution : La fonction ln est définie et dérivable sur \mathbb{R}_+^* et la fonction $\sqrt{\cdot}$ est dérivable sur \mathbb{R}_+^* . Ainsi, par composition, on doit avoir $x^2 + 1 > 0$ (ce qui est le cas pour tous les réels x), et $\ln(x^2 + 1) > 0$. Or $\ln(x^2 + 1) > 0 \iff x^2 + 1 > 1 \iff x^2 > 0 \iff x \neq 0$.

Ainsi,
$$f$$
 est dérivable sur \mathbb{R}^* , et sa dérivée est donnée par : $\forall x \neq 0$, $f'(x) = 2x \times \frac{1}{x^2 + 1} \times \frac{1}{2\sqrt{\ln(x^2 + 1)}} = \frac{x}{(x^2 + 1)\sqrt{\ln(x^2 + 1)}}$.

2. Dire pour quelles valeurs de a et b la puissance généralisée a^b est définie, et donner son expression.

Solution : La puissance généralisée a^b est définie pour tous $a \in \mathbb{R}_+^*$ et $b \in \mathbb{R}$, par l'expression : $a^b = e^{b \ln(a)}.$

3. Tracer sans justifier le graphe de la fonction $x \mapsto x^{-7}$ et le graphe de la fonction $x \mapsto \ln(x)$.

Solution : Voir le cours. Pour x^{-7} , on se réfère à la courbe de $x \mapsto x^n$ avec n impair négatif.

4. Déterminer $\lim_{x \to -\infty} 2x^9 - 25x^8 + 3x^2 - 1$ et $\lim_{x \to +\infty} \exp\left(\frac{1 - 2x^2}{3x + 1}\right)$

Solution : Selon le cours, $\lim_{x\to-\infty} 2x^9 - 25x^8 + 3x^2 - 1 = \lim_{x\to-\infty} 2x^9 = -\infty$ puisque 9 est impair et 2>0.

Pour la seconde limite : On sait que pour tout $x \notin \{-\frac{1}{3}, 0\}$, on a :

$$\frac{1-2x^2}{3x+1} = \frac{x^2(\frac{1}{x^2}-2)}{x(3+\frac{1}{x})} = x\frac{-2+\frac{1}{x^2}}{3+\frac{1}{x}}. \text{ Ainsi, par opérations, on a } \lim_{x\to+\infty} \frac{-2+\frac{1}{x^2}}{3+\frac{1}{x}} = -\frac{2}{3} \text{ et donc}$$

$$\lim_{x\to+\infty} \frac{1-2x^2}{3x+1} = -\infty.$$

Enfin, en composant par la fonction exponentielle qui est continue, on obtient : $\lim_{x\to+\infty} \exp\left(\frac{1-2x^2}{3x+1}\right) =$ 0.

5. **Bonus :** Soit x > 0. Simplifier au maximum a^b , où $a = \left(\frac{1}{x}\right)^{-\sqrt{x}}$ et $b = x^{\frac{1}{2}}$.

Solution : On sait que $b = x^{\frac{1}{2}} = \sqrt{x}$.

Ainsi,
$$a^b = \left(\left(\frac{1}{x}\right)^{-\sqrt{x}}\right)^{\sqrt{x}} = \left(\frac{1}{x}\right)^{-\sqrt{x} \times \sqrt{x}} = \left(\frac{1}{x}\right)^{-x} = x^x$$
.