TD Ch 0 – Logique et raisonnement Corrigé des exos 9 et 10

II. Quantificateurs

9. Nier chacune des assertions suivantes, puis dire si elle est vraie ou fausse.

a)
$$\forall x \in \mathbb{R}, x \ge 0$$

b)
$$\exists a \in \mathbb{R}, a \geq 0$$

c)
$$\forall x \in \mathbb{R}^+, \exists y \in \mathbb{R}, x = y^2$$

d)
$$\exists y \in \mathbb{R}, \forall x \in \mathbb{R}^+, x = y^2$$

e)
$$\forall x \in \mathbb{R}, \exists y \in \mathbb{R}^+, x = y^2$$

d)
$$\exists y \in \mathbb{R}, \forall x \in \mathbb{R}^+, x = y^2$$
 e) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}^+, x = y^2$ f) $\forall t \in \mathbb{R}^+, \exists \epsilon > 0, \frac{1}{t} \ge \epsilon$

g)
$$\forall t \in \mathbb{R}^+, \exists \epsilon > 0, \frac{1}{t} > \epsilon$$

h)
$$\forall (a,b) \in \mathbb{R}^2, (ab=0) \Longrightarrow (a=0 \text{ ou } b=0)$$

Solution:

- a) L'assertion est fausse (par exemple x=-1<0). Sa négation est : $\exists x\in\mathbb{R}, x<0$.
- b) L'assertion est vraie (par exemple avec a=0). Sa négation est : $\forall a \in \mathbb{R}, a < 0$.
- c) L'assertion est vraie (en prenant, pour $x \ge 0$ quelconque, $y = \sqrt{x}$. Sa négation est : $\exists x \in \mathbb{R}^+, \forall y \in \mathbb{R}, x \neq y^2$.
- d) L'assertion est fausse (si par l'absurde elle était vraie, alors tous les nombres positifs seraient égaux). Sa négation est : $\forall y \in \mathbb{R}, \exists x \in \mathbb{R}^+, x \neq y^2$.
- e) L'assertion est fausse (par exemple avec x = -1, qui n'est le carré d'aucun réel). Sa négation est : $\exists x \in \mathbb{R}, \forall y \in \mathbb{R}^+, x \neq y^2$.
- f) L'assertion n'a pas de sens pour t=0, il s'agit d'une erreur de l'énoncé! On devrait écrire : $\forall t \in \mathbb{R}_+^*, \exists \epsilon > 0, \frac{1}{t} \geq \epsilon$. Cette assertion est vraie (en prenant, pour t > 0 quelconque, $\epsilon = \frac{1}{t} > 0$). Sa négation est : $\exists t \in \mathbb{R}_+^*, \forall \epsilon > 0, \frac{1}{\epsilon} < \epsilon$.
- g) Encore une fois, il faut remplacer \mathbb{R}^+ par \mathbb{R}_+^* . L'assertion est encore vraie, avec par exemple $\epsilon = \frac{1}{2\epsilon}$. Sa négation est : $\exists t \in \mathbb{R}_+^*, \forall \epsilon > 0, \frac{1}{\epsilon} \leq \epsilon$
- h) Cette assertion est vraie, c'est la propriété des produits nuls sur R. Sa négation est : $\exists (a,b) \in \mathbb{R}^2, (ab=0)$ et $(a \neq 0$ et $b \neq 0)$.

10. Soit $f: \mathbb{R} \to \mathbb{R}$. Écrire les assertions suivantes à l'aide des quantificateurs, puis donner leur négation.

- a) Pour tout $x \in \mathbb{R}$, f(x) est strictement positif.
- b) f est croissante sur \mathbb{R} .
- c) Il existe un réel dont l'image par f est négative. d) f est paire.

e) f ne s'annule jamais.

f) f atteint toutes les valeurs de \mathbb{N} .

g) f est constante sur \mathbb{R} .

h) f est périodique.

Solution:

- a) $\forall x \in \mathbb{R}, f(x) > 0$. Sa négation est : $\exists x \in \mathbb{R}, f(x) \leq 0$.
- b) $\forall a, b \in \mathbb{R}, (a \leq b \Longrightarrow f(a) \leq f(b))$. Négation : $\exists a, b \in \mathbb{R}, (a \leq b)$ et f(a) > f(b).
- c) $\exists x \in \mathbb{R}, f(x) \leq 0$. Négation : $\forall x \in \mathbb{R}, f(x) > 0$.
- d) $\forall x \in \mathbb{R}, f(-x) = f(x)$. Négation : $\exists x \in \mathbb{R}, f(-x) \neq f(x)$.
- e) $\forall x \in \mathbb{R}, f(x) \neq 0$. Négation : $\exists x \in \mathbb{R}, f(x) = 0$.
- f) $\forall n \in \mathbb{N}, \exists x \in \mathbb{R}, f(x) = n. \text{ Négation} : \exists n \in \mathbb{N}, \forall x \in \mathbb{R}, f(x) \neq n.$
- g) Deux possibilités :
 - $\forall x, y \in \mathbb{R}, f(x) = f(y)$. Négation : $\exists x, y \in \mathbb{R}, f(x) \neq f(y)$.
 - $\exists c \in \mathbb{R}, \forall x \in \mathbb{R}, f(x) = c$. Négation : $\forall c \in \mathbb{R}, \exists x \in \mathbb{R}, f(x) \neq c$.
- h) $\exists T \in \mathbb{R}^*, \forall x \in \mathbb{R}, f(x+T) = f(x)$. Négation : $\forall T \in \mathbb{R}^*, \exists x \in \mathbb{R}, f(x+T) \neq f(x)$.