TD Ch 0 – Récurrences

- **1.** Soit $a \in \mathbb{R}^+$ fixé. Montrer que pour tout $n \in \mathbb{N} : (1+a)^n \ge 1 + na$.
- **2.** Soit $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=2$ et, pour tout $n\in\mathbb{N}$: $u_{n+1}=\frac{u_n}{1+u_n}$. Montrer que pour tout $n\in\mathbb{N}$, on a $u_n=\frac{2}{2n+1}$.
- **3.** Soit $(u_n)_{n \in \mathbb{N}}$ définie par $u_0 = 0$ et, pour tout $n \in \mathbb{N}$: $u_{n+1} = \frac{1 + 2u_n}{2 + u_n}$. Montrer que pour tout $n \in \mathbb{N}^*$, on a $0 < u_n \le 1$.
- **4.** Soit $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=3$ et, pour tout $n\in\mathbb{N}:u_{n+1}=3u_n-8$. Montrer que pour tout $n\in\mathbb{N}$, on a $u_n=-3^n+4$.

TD Ch 0 – Récurrences

- **1.** Soit $a \in \mathbb{R}^+$ fixé. Montrer que pour tout $n \in \mathbb{N} : (1+a)^n \ge 1 + na$.
- **2.** Soit $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=2$ et, pour tout $n\in\mathbb{N}$: $u_{n+1}=\frac{u_n}{1+u_n}$. Montrer que pour tout $n\in\mathbb{N}$, on a $u_n=\frac{2}{2n+1}$.
- **3.** Soit $(u_n)_{n \in \mathbb{N}}$ définie par $u_0 = 0$ et, pour tout $n \in \mathbb{N}$: $u_{n+1} = \frac{1 + 2u_n}{2 + u_n}$. Montrer que pour tout $n \in \mathbb{N}^*$, on a $0 < u_n \le 1$.
- **4.** Soit $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=3$ et, pour tout $n\in\mathbb{N}:u_{n+1}=3u_n-8$. Montrer que pour tout $n\in\mathbb{N}$, on a $u_n=-3^n+4$.

TD Ch 0 – Récurrences

- **1.** Soit $a \in \mathbb{R}^+$ fixé. Montrer que pour tout $n \in \mathbb{N} : (1+a)^n \ge 1 + na$.
- **2.** Soit $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=2$ et, pour tout $n\in\mathbb{N}$: $u_{n+1}=\frac{u_n}{1+u_n}$. Montrer que pour tout $n\in\mathbb{N}$, on a $u_n=\frac{2}{2n+1}$.
- **3.** Soit $(u_n)_{n \in \mathbb{N}}$ définie par $u_0 = 0$ et, pour tout $n \in \mathbb{N}$: $u_{n+1} = \frac{1 + 2u_n}{2 + u_n}$. Montrer que pour tout $n \in \mathbb{N}^*$, on a $0 < u_n \le 1$.
- **4.** Soit $(u_n)_{n\in\mathbb{N}}$ définie par $u_0=3$ et, pour tout $n\in\mathbb{N}:u_{n+1}=3u_n-8$. Montrer que pour tout $n\in\mathbb{N}$, on a $u_n=-3^n+4$.