
TD Ch 12 – Équations
différentielles usuelles

I. Ordre 1
1. Résoudre les équations différentielles suivantes.

y′ + y = x2 + x + 1a) y′ + ty = t3b) y′ − 3t2y = t2c)

y′ + 3y = (5x + 1)e−3xd) y′ + 3t2y = t2 + e−t3e) y′ + y = 1
1+etf)

y′ − y = sin xg) 1
2y′ − y = x cos(2x)h) y′ − iy = (1 − x)eixi)

2. Résoudre les problèmes de Cauchy suivants :

Sur R,
{

3y′ + y = 2x + 1
y(0) = 2a) Sur ]1, +∞[,

 t ln(t)y′ + y = −1 + ln(t)
t

y(e) = 0
b)

Sur
]
0, π

2
[
,

{
tan(t)y′ + y − sin(t) = 0
y

(
π
4

)
= 1c) Sur ] − 1, +∞[,

{
(x + 1)y′ + xy = x2 − x + 1
y(1) = −1d)

3. Trouver toutes les applications f : R → R continues telles que : ∀x ∈ R, 2f(x) = 3x

∫ x

0
f(t)dt.

4. Résoudre sur R∗
+ l’équation différentielle suivante : x2 + y2 + 2xyy′ = 0.

On posera la fonction auxiliaire z = y2.

II. Ordre 2 à coefficients constants
5 (Homogènes). Résoudre les équations différentielles suivantes :

y′′ − 5y′ + 6y = 0a) 2y′′ − 3y′ − 5y = 0b) y′′ + y′ + y = 0c)
1
4y′′ + y′ + y = 0d) y′′ + 5y = 0e) y′′ − 2y′ + ay = 0 a ∈ Rf)

6. Résoudre le problème de Cauchy :


y′′ − 3y′ + 2y = 5
y(0) = 2
y′(0) = 2

7. 1. Résoudre les équations différentielles suivantes :
y′′ − 3y′ + 2y = exa) y′′ − 4y′ + 4y = xexb) y′′ − 2y′ + 2y = x2c)

2. Résoudre : y′′ + y′ + y = x cos(x).
On cherchera une solution particulière sous la forme : yp(x) = (ax + b) cos(x) + (cx + d) sin(x)

8. Déterminer les solutions sur R du système différentiel suivant :
{

x′(t) = 4x(t) − 3y(t)
y′(t) = 2x(t) − y(t)

9. Déterminer l’ensemble des fonctions C1 sur R vérifiant : ∀x ∈ R, f ′(x) + 2f(x) +
∫ x

0
f(t)dt = x

10. Déterminer les fonction f : R → R qui vérifient : ∀x ∈ R, f ′(x) = f(−x).

11. On veut résoudre sur R∗
+ l’équation (E) : x2y′′ + xy′ − 4y = 4x2.

1. En notant y(x) = z(ln x) montrer que z vérifie une équation différentielle linéaire du second ordre à
coefficients constants, notée (E′).

2. Résoudre (E′), puis en déduire les solutions de (E).
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III. Modélisation
12. Un laboratoire de recherche étudie l’évolution d’une population animale qui semble en voie de

disparition.
En 2000, une étude est effectuée sur un échantillon de cette population dont l’effectif initial est égal à 1000.
Cet échantillon évolue et son effectif, exprimé en milliers d’individus, est approché par une fonction f du
temps t (exprimé en années à partir de l’origine 2000).

D’après le modèle d’évolution choisi, la fonction f est dérivable, strictement positive sur [0, +∞[, et
satisfait l’équation différentielle : (E) y′ = − 1

20y(3 − ln(y))

1. Soit f une fonction dérivable, strictement positive sur R+.
Montrer que f vérifie, pour tout t de R+, f ′(t) = − 1

20f(t)[3 − ln (f(t))], si et seulement si la

fonction g = ln(f) vérifie, pour tout t de R+, g′(t) = 1
20g(t) − 3

20 .

2. Donner la solution générale de l’équation différentielle : (H) z′ = 1
20z − 3

20 .

3. En déduire qu’il existe un réel C tel que, pour tout t de [0, +∞[

f(t) = exp
[
3 + C exp

(
t

20

)]
4. Déterminer avec les données de l’énoncé la valeur de C.
5. Dresser le tableau de variations de f sur R+.
6. Au bout de combien d’années, selon ce modèle, la population aura-t-elle moins de 20 individus ?

13 (Température d’un corps chaud). On peut montrer que l’évolution de la température
d’un corps chaud (plat sortant du four ou autre) placé dans une pièce de température constante suit la loi
suivante : la variation de la température au temps t est proportionnelle à la différence entre la température
du corps et celle de la pièce.

1. Justifier que la température T (t) du corps chaud en fonction du temps vérifie l’équation différentielle :

(E) T ′(t) + αT (t) = αTair

où α est une constante qu’on ne cherchera pas à déterminer, et Tair est la température de la pièce.
2. Le plat est sorti du four à une température 9 fois plus importante que celle de la pièce.

Au bout de combien de temps sa température sera-t-elle divisée par 2 ? Que dire de la limite de T (t)
lorsque t tend vers +∞ ?

14 (Loi de Fick). On étudie les échanges de dioxygène entre le sang et une cellule.
En notant Cs(t) la concentration en dioxygène dans le sang, et Cc(t) celle en dioxygène dans la cellule,

la loi de Fick nous donne l’équation différentielle suivante :

∀t ∈ R+, C ′
s(t) = ρ(Cc(t) − Cs(t))

où ρ est une constante positive représentant les données du système.
On considère qu’à t = 0, au début des échanges, le sang est chargé en dioxygène à une concentration

C0 > 0 et la cellule est vidée de tout dioxygène. De plus on considère que la quantité totale de dioxygène
dans le système est constante (pas de perte lors des échanges).

1. En utilisant la conservation de la quantité de dioxygène, exprimer Cc(t) en fonction de Cs(t) et C0
pour tout t ∈ R

2. En déduire une équation différentielle vérifiée par Cs(t) uniquement.
3. Résoudre cette équation différentielle et trouver la valeur de Cs(t) et de C2c(t) pour tout t ∈ R.
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4. Exprimer en fonction de ρ le temps à partir duquel la concentration en dioxygène sera deux fois plus
importante dans le sang que dans la cellule.

15 (Pendule). En mécanique, lors de l’étude du pendule simple on obtient l’équation différentielle
suivante :

d2θ

dt2 + g

l
θ = 0

où θ est l’angle du pendule par rapport à la verticale, t le temps, g l’accélération de la pesanteur, l la
longueur du fil.
Conditions initiales : à t = 0, le pendule est lâché sans vitesse à partir d’un angle θ0.
Déterminer l’équation horaire du mouvement.

16 (Datation au carbone 14). La concentration en radiocarbone (ie le rapport entre la quantité
de Carbone 14 et la quantité totale de carbone) d’un échantillon de matière organique suit l’équation suivante,
due à la désintégration radioactive du carbone 14 : C ′(t) = −λC(t), où C(t) représente la concentration
en fonction du temps t, et λ > 0 est la constante de radioactivité du carbone 14.
Au temps 0, la concentration en radiocarbone est assimilable à celle de l’atmosphère, et vaut environ C0 =
10−12.

1. Exprimer la concentration en radiocarbone de l’échantillon au cours du temps.
2. Le temps de demie-vie du carbone 14 correspond au temps qu’il faut pour que la concentration en

radiocarbone soit divisée par 2. Exprimer le temps de demie-vie t 1
2

en fonction de la constante λ.

3. On donne t 1
2

= 5730ans environ. Estimer l’âge d’un échantillon dont la concentration en radiocarbone
vaut C = 8 × 10−13
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