TD Ch 5 – Nombres complexes

I. Forme algébrique

 ${f 1}$. Mettre sous forme algébrique les nombres complexes suivants :

a)
$$(3+2i)(5i-4)$$

b)
$$(5-2i)^2$$

c)
$$(3-i)(3+i)-5i(i+3)$$
 d) i^{23}

d)
$$i^{23}$$

e)
$$(i - \sqrt{2})^3$$

$$f) \frac{1-3i}{1+3i}$$

$$g) \frac{1+5i}{2i}$$

h)
$$\frac{1+4i}{1-5i}$$

i)
$$\left(\frac{\sqrt{3}-i}{1+i\sqrt{3}}\right)^9$$

j)
$$\frac{(1+i)^2}{(1-i)^2}$$

k)
$$(1+i)^{2019}$$

1)
$$\frac{1}{(4-i)(3+2i)}$$

$$m)(\sqrt{3}-2i)^4$$

n)
$$\frac{(3-i)(2-3i)}{-2i+5}$$

 $\mathbf{2}$. Résoudre dans $\mathbb C$ les équations d'inconnue z suivantes.

1. Dans cette question, il est demandé de donner les solutions sous forme algébrique.

a)
$$(5-i)(z+3) = i$$

b)
$$(2i+1)z-4i=1-i+2z$$
 c) $(1+2i)(z-3i)=z$

c)
$$(1+2i)(z-3i) = z$$

$$d) \frac{2+3iz}{z+i} = -2i$$

e)
$$(2z+i)^2 = 4z^2 - 5z + 3 + iz$$

2. Dans cette question, il est demandé de représenter les solutions dans le plan complexe.

a)
$$z + \overline{z} = 6$$

b)
$$\overline{z} = i - z$$

$$c) \ \frac{\overline{z}}{1+i} = \frac{-z}{1-i}$$

d)
$$|z| = 2$$

e)
$$|2 + z - 3i| \le 1$$

$$f) |z - \overline{z}| = 6$$

II. Module

 ${f 3.}$ Calculer de tête les modules des nombres complexes suivants :

a)
$$-5$$

b)
$$-2i$$

c)
$$1 + i\sqrt{3}$$

d)
$$(4+3i)(12-5i)$$

e)
$$\frac{13+5i}{13-5i}$$

f)
$$(3 - \sqrt{6}i)^4$$

g)
$$(1+i)^{10}$$

h)
$$\frac{(3-5i)^2}{3+5i}$$

4. Montrer que si $u, v \in \mathbb{C}$ sont de module 1, alors : $\frac{u+v}{1+uv}$ est réel, et $\frac{u+v}{1-uv}$ est imaginaire pur.

5. Soit $z \in \mathbb{C}$. Montrer qu'on $a: |z+i| = |z-i| \Longleftrightarrow z \in \mathbb{R}$.

6. Montrer que pour tous $z, z' \in \mathbb{C}$, on a : $|z + z'|^2 + |z - z'|^2 = 2(|z|^2 + |z'|^2)$. Interpréter géométriquement cette identité dans un parallélogramme quelconque.

7. Soit $t \in \mathbb{R}$. Donner l'expression du module de z_1 et z_2 , où : $z_1 = t^2 + 2it - 1$ et $z_2 = 1 - \cos(2t) + i\sin(2t)$. Mettre z_2 sous forme exponentielle.

III. Forme exponentielle

8. Mettre sous forme exponentielle les nombres complexes suivants :

a)
$$-18$$

b)
$$-7i$$

$$c) \pi$$

d)
$$1 + i$$

e)
$$(1+i)^7$$

$$f) \frac{1+i\sqrt{3}}{5i-5}$$

g)
$$\frac{1 - i\sqrt{3}}{(2 + \sqrt{3}) - i}$$

h)
$$-10e^{i\pi} \left(\frac{2e^{\frac{5i\pi}{8}}}{e^{\frac{7i\pi}{4}}}\right)^{6}$$

i)
$$\sqrt{2+\sqrt{2}} - i\sqrt{2-\sqrt{2}}$$

$$j) -5\left(\cos\left(\frac{2\pi}{5}\right) - i\sin\left(\frac{2\pi}{5}\right)\right)$$

9. Soit $\theta \in \mathbb{R} \setminus \{\frac{\pi}{2} + k\pi \mid k \in \mathbb{Z}\}$ et $n \in \mathbb{Z}$. Mettre sous forme trigonométrique :

a)
$$\frac{1}{1 + i \tan(\theta)}$$

b)
$$\left(\frac{1+i\tan(\theta)}{1-i\tan(\theta)}\right)^n$$

c)
$$1 + e^{2i\theta}$$

10. On note $j = e^{\frac{2i\pi}{3}}$.

1. Donner les formes exponentielles et algébriques de j et j^2 .

2. En déduire que
$$1+j+j^2=0$$
 et que $\frac{1}{j}=j^2=\overline{j}$.

3. Calculer $j^3,$ et en déduire la valeur de j^{853}

4. Simplifier les expression :
$$(1+j)^5$$
, $\frac{1}{1-j^2}$ et $\frac{1-j}{1+j}$.

IV. Applications

11. Soit $x \in \mathbb{R}$.

1. Rappeler la formule d'Euler pour $\sin(x)$, puis développer $\sin(x)^2$.

2. En déduire une écriture de $\sin^2(x)$ en fonction de $\cos(2x)$.

3. Par la même méthode, exprimer $\sin^3(x)$ en fonction de $\sin(3x)$ et $\sin(x)$.

4. De même, obtenir une formule pour $\cos^4(x)$.

12. Soit $x \in \mathbb{R}$.

1. Rappeler la forme algébrique de e^{ix} , puis développer $(e^{ix})^2$ et $(e^{ix})^3$.

2. En déduire une expression de $\sin(2x)$ et $\cos(3x)$ en fonction de $\cos(x)$ et $\sin(x)$.

3. De même, exprimer $\cos(5x)$ et $\sin(5x)$ en fonction de $\cos(x)$ et $\sin(x)$.

4. En déduire la valeur exacte de $\cos\left(\frac{\pi}{10}\right)$.

13. 1. Résoudre dans $\mathbb C$ les équations suivantes. On mettra les solutions sous forme exponentielle.

a)
$$z^2 = i$$

b)
$$z^3 = -1$$

c)
$$z^4 + 4 = 0$$

d)
$$z^4 = j$$
, où $j = e^{\frac{2i\pi}{3}}$.

2. Calculer les racines complexes des nombres suivants :

a)
$$\sqrt{2}i - \sqrt{2}$$

b)
$$\frac{\sqrt{6}}{2} - \frac{i\sqrt{2}}{2}$$
 c) $\frac{1+i}{1+i\sqrt{3}}$

c)
$$\frac{1+i}{1+i\sqrt{3}}$$

d)
$$7 + 24i$$

14. 1. Pour $n \in \mathbb{N}^*$, rappeler les solutions complexes de l'équation $z^n = 1$.

2. En déduire les solutions complexes de l'équation $z^n = (z-1)^n$.

15. Résoudre dans $\mathbb C$ les équations suivantes :

a)
$$z^2 + z + 1 = 0$$

b)
$$(z+1)^2 + (2z+3)^2 = 0$$
 c) $z^2 = 4z - 13$

c)
$$z^2 = 4z - 13$$

d)
$$5z = 4(z^2 + 1)$$

e)
$$z^2 - 4\cos(a)z + 2(\cos(2a) + 1) = 0$$
 où $a \in \mathbb{R}$

f) $z^2 - 2\sin(a)z + \tan^2(a) = 0$, où $a \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$

16. Résoudre dans \mathbb{C} l'équation $z^6 + z^3 + 1 = 0$.